High Power Diode Laser (HPDL) surface treatments to improve the mechanical properties and the corrosion behaviour of Mg-Zn-Ca alloys for biodegradable implants

[1]  B. Torres,et al.  Mg–1Zn–1Ca alloy for biomedical applications. Influence of the secondary phases on the mechanical and corrosion behaviour , 2020 .

[2]  D. Koutný,et al.  Effect of Laser Parameters on Processing of Biodegradable Magnesium Alloy WE43 via Selective Laser Melting Method , 2020, Materials.

[3]  B. Torres,et al.  Microstructural, mechanical and corrosion characterization of an as-cast Mg–3Zn–0.4Ca alloy for biomedical applications , 2020, Journal of Magnesium and Alloys.

[4]  Shu-bo Li,et al.  A review on thermal conductivity of magnesium and its alloys , 2020 .

[5]  Sameehan S. Joshi,et al.  Optimization of biocompatibility in a laser surface treated Mg-AZ31B alloy. , 2019, Materials science & engineering. C, Materials for biological applications.

[6]  V. Balla,et al.  Laser surface melting of Mg-Zn-Dy alloy for better wettability and corrosion resistance for biodegradable implant applications , 2019, Applied Surface Science.

[7]  Sviatlana V. Lamaka,et al.  The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8Ca alloy: An overall perspective , 2019, Corrosion Science.

[8]  Y. Guan,et al.  Enhanced mechanical properties and biocompatibility of Mg-Gd-Ca alloy by laser surface processing , 2019, Surface and Coatings Technology.

[9]  C. Shuai,et al.  Improved biodegradation resistance by grain refinement of novel antibacterial ZK30-Cu alloys produced via selective laser melting , 2019, Materials Letters.

[10]  Suiyuan Chen,et al.  Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition , 2019, Journal of Materials Science & Technology.

[11]  Frank Feyerabend,et al.  The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg , 2019, Corrosion Science.

[12]  W. Guo,et al.  Effects of heat treatment on the thermal properties of AZ91D magnesium alloys in different casting processes , 2018, Journal of Alloys and Compounds.

[13]  H. Hou,et al.  Mechanical and Thermal Conductivity Properties of Enhanced Phases in Mg-Zn-Zr System from First Principles , 2018, Materials.

[14]  V. Balla,et al.  Surface design of Mg-Zn alloy temporary orthopaedic implants: Tailoring wettability and biodegradability using laser surface melting , 2018, Surface and Coatings Technology.

[15]  Y. Guan,et al.  Laser surface modification of Mg-Gd-Ca alloy for corrosion resistance and biocompatibility enhancement , 2018, Applied Surface Science.

[16]  Hongxia Wang,et al.  Corrosion behavior of Mg-6Bi-2Sn alloy in the simulated body fluid solution: The influence of microstructural characteristics , 2018 .

[17]  K. P. Rao,et al.  High Temperature Strength and Hot Working Technology for As-Cast Mg–1Zn–1Ca (ZX11) Alloy , 2017 .

[18]  N. Birbilis,et al.  Fundamentals and advances in magnesium alloy corrosion , 2017 .

[19]  David Dean,et al.  Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. , 2017, Journal of the mechanical behavior of biomedical materials.

[20]  M. Zheludkevich,et al.  Bioactive plasma electrolytic oxidation coatings on Mg-Ca alloy to control degradation behaviour , 2017 .

[21]  M. Elahinia,et al.  Mechanical and In Vitro Corrosion Properties of a Heat-Treated Mg-Zn-Ca-Mn Alloy as a Potential Bioresorbable Material , 2017 .

[22]  L. Laorden,et al.  Modification of microstructure and superficial properties of A356 and A356/10%SiCp by Selective Laser Surface Melting (SLSM) , 2017 .

[23]  Liwen Zhang,et al.  Hydrothermal synthesis and corrosion behavior of the protective coating on Mg-2Zn-Mn-Ca-Ce alloy , 2016 .

[24]  Shih-to Fei,et al.  Microstructures and properties of as-cast Mg92Zn4Y4 and Mg92Zn4Y3Gd1 alloys with LPSO phase , 2015 .

[25]  Jinshan Zhang,et al.  Effects of Ti addition on the microstructure and mechanical properties of Mg–Zn–Zr–Ca alloys , 2015 .

[26]  S. Németh,et al.  Mechanism of calcium phosphate deposition in a hydrothermal coating process , 2015 .

[27]  D. Zander,et al.  Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys , 2015 .

[28]  N. Birbilis,et al.  Corrosion of magnesium alloys: the role of alloying , 2015 .

[29]  O. Gharbi,et al.  Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  K. P. Rao,et al.  Microstructure and Properties of Magnesium Alloy Mg-1Zn-1Ca (ZX11) , 2015 .

[31]  Zhang Qingxin,et al.  Effect of Ce/La microalloying on microstructural evolution of Mg-Zn-Ca alloy during solution treatment , 2015 .

[32]  Fan Zhang,et al.  Improving in-vitro biocorrosion resistance of Mg-Zn-Mn-Ca alloy in Hank's solution through addition of cerium , 2015 .

[33]  D. Liu,et al.  Effects of solidification cooling rate on the corrosion resistance of Mg–Zn–Ca alloy , 2014 .

[34]  A. Atrens,et al.  Corrosion behaviour of laser surface melted magnesium alloy AZ91D , 2014 .

[35]  Yunfei Ding,et al.  Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. , 2014, Journal of materials chemistry. B.

[36]  B. Torres,et al.  Fracture behaviour of a magnesium–aluminium alloy treated by selective laser surface melting treatment , 2014 .

[37]  D. Eastwood Evolution of Fungal Wood Decay , 2014 .

[38]  J. Kubásek,et al.  Structural and mechanical characteristics of Mg–4Zn and Mg–4Zn–0.4Ca alloys after different thermal and mechanical processing routes , 2013 .

[39]  B. Torres,et al.  Novel laser surface treatments on AZ91 magnesium alloy , 2013 .

[40]  H. Bakhsheshi‐Rad,et al.  Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys , 2012 .

[41]  B. Torres,et al.  Selective laser surface melting of a magnesium-aluminium alloy , 2012 .

[42]  Darren J. Martin,et al.  Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37 °C , 2011 .

[43]  A. Atrens,et al.  An innovative specimen configuration for the study of Mg corrosion , 2011 .

[44]  Liu Chenglong,et al.  Comparison of calcium phosphate coatings on Mg-Al and Mg-Ca alloys and their corrosion behavior in Hank's solution , 2010 .

[45]  Wei Zhou,et al.  Effect of laser surface melting on corrosion behaviour of AZ91D Mg alloy in simulated-modified body fluid , 2009 .

[46]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[47]  Sviatlana V. Lamaka,et al.  Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy , 2008 .

[48]  A. Coy,et al.  High power diode laser treatments for improving corrosion resistance of A380/SiCp aluminium composites , 2008 .

[49]  A. Ureña,et al.  Surface treatment of aluminum matrix composites using a high power diode laser , 2007 .

[50]  Friedrich G. Bachmann,et al.  Industrial applications of high power diode lasers in materials processing , 2003 .

[51]  Noé Cheung,et al.  Microstructural and hardness investigation of an aluminum–copper alloy processed by laser surface melting , 2003 .