Graphene bolometer for vis-IR spectral range made on nano-SiN membrane

A sensitive bolometric detector for visible and infrared wavelengths based on a novel assembly principle of a graphene monolayer on a nano/micro SiN membrane is realised. The basic operating principle of the optical detector relies on the absorption of electromagnetic radiation in the graphene and creation of a strong thermal gradient, rT, which is detected via the Seebeck effect: Voltage = S x ∇rT, where S is the Seebeck coefficient of graphene. A simple lithography-free deposition of two metal contacts with different electron work functions: Pd (by sputtering) and Ag (by jet printing and annealing) was used. Sensitivity of the bolometer was the same ~1:1 mV/mW at 1030 and 515 nm wavelengths.

[1]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[2]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[3]  Saulius Juodkazis,et al.  Analysis of defects patterned by femtosecond pulses inside KBr and SiO2 glass , 2016 .

[4]  Saulius Juodkazis,et al.  Solar water splitting: efficiency discussion , 2016, 1604.01094.

[5]  Klaus Kern,et al.  Contact and edge effects in graphene devices. , 2008, Nature nanotechnology.

[6]  Saulius Juodkazis,et al.  Optical angular manipulation of liquid crystal droplets in laser tweezers , 2009 .

[7]  Saulius Juodkazis,et al.  Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8 , 2006 .

[8]  Saulius Juodkazis,et al.  InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions , 2014 .

[9]  Jun Yan,et al.  Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. , 2014, Nature nanotechnology.

[10]  Saulius Juodkazis,et al.  Silk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range , 2017, Materials.

[11]  S. Wada,et al.  Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection. , 2008, Optics express.

[12]  Saulius Juodkazis,et al.  3D printed polarizing grids for IR-THz synchrotron radiation , 2018 .

[13]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[14]  Saulius Juodkazis,et al.  Photoelectrolysis of water: Solar hydrogen--achievements and perspectives. , 2010, Optics express.

[15]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[16]  Saulius Juodkazis,et al.  Micro-thermocouple on nano-membrane: thermometer for nanoscale measurements , 2018, Scientific Reports.

[17]  Saulius Juodkazis,et al.  Silk fibroin as a water-soluble bio-resist and its thermal properties , 2016 .

[18]  Howard Milchberg,et al.  Dual-gated bilayer graphene hot-electron bolometer. , 2012, Nature nanotechnology.

[19]  K. Vahala,et al.  Cavity opto-mechanics , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[20]  Saulius Juodkazis,et al.  Spatially Selective Nonlinear Photopolymerization Induced by the Near-Field of Surface Plasmons Localized on Rectangular Gold Nanorods , 2009 .

[21]  Saulius Juodkazis,et al.  Photo-thermoelectric energy converter with black-Si absorber , 2014, 2014 Conference on Optoelectronic and Microelectronic Materials & Devices.

[22]  Saulius Juodkazis,et al.  Optical tweezing and binding at high irradiation powers on black-Si , 2017, Scientific Reports.

[23]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[24]  Saulius Juodkazis,et al.  Orientational Mapping Augmented Sub-Wavelength Hyper-Spectral Imaging of Silk , 2017, Scientific Reports.

[25]  Saulius Juodkazis,et al.  Dynamic position shifts of X-ray emission from a water film induced by a pair of time-delayed femtosecond laser pulses. , 2017, Optics express.

[26]  Saulius Juodkazis,et al.  Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm , 2006 .

[27]  Saulius Juodkazis,et al.  Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser , 2001 .

[28]  Jiwoong Park,et al.  Imaging of photocurrent generation and collection in single-layer graphene. , 2009, Nano letters.

[29]  Saulius Juodkazis,et al.  Nanoscale chemical mapping of laser-solubilized silk , 2017, 1709.01799.

[30]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[31]  Jing Kong,et al.  Single-layer graphene on silicon nitride micromembrane resonators , 2014 .

[32]  Qidai Chen,et al.  Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing , 2017, Light: Science & Applications.

[33]  Saulius Juodkazis,et al.  Nanoparticle-enhanced photopolymerization , 2009 .

[34]  Valerio Pruneri,et al.  Mid-Infrared Pyroresistive Graphene Detector on LiNbO3 , 2016 .

[35]  Saulius Juodkazis,et al.  Mono- and bi-metallic plasmonic photocatalysts for degradation of organic compounds under UV and visible light irradiation , 2014 .

[36]  Saulius Juodkazis,et al.  Numerical analysis on the optical role of nano-randomness on the Morpho butterfly's scale. , 2011, Journal of nanoscience and nanotechnology.

[37]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[38]  Saulius Juodkazis,et al.  Black-CuO: surface-enhanced Raman scattering and infrared properties. , 2015, Nanoscale.

[39]  F. Xia,et al.  Photocurrent imaging and efficient photon detection in a graphene transistor. , 2009, Nano letters.

[40]  Saulius Juodkazis,et al.  Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses , 2003 .

[41]  Saulius Juodkazis,et al.  Laser printed nano-gratings: orientation and period peculiarities , 2016, Scientific Reports.

[42]  Saulius Juodkazis,et al.  Ultrafast laser processing of materials: from science to industry , 2016, Light: Science & Applications.

[43]  Saulius Juodkazis,et al.  Black silicon: substrate for laser 3D micro/nano-polymerization. , 2013, Optics express.

[44]  S. Juodkazis,et al.  Nanoscale Precision of 3D Polymerization via Polarization Control , 2016, 1603.06748.

[45]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[46]  Saulius Juodkazis,et al.  Engineering 3D Nanoplasmonic Assemblies for High Performance Spectroscopic Sensing. , 2015, ACS applied materials & interfaces.

[47]  S. Juodkazis,et al.  Photophysics and photochemistry of a laser manipulated microparticle , 1999 .

[48]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[49]  V. Ryzhii,et al.  Device Model for Graphene Nanoribbon Phototransistor , 2008, 0804.1833.

[50]  Saulius Juodkazis,et al.  Optical transmission and laser structuring of silicon membranes. , 2009, Optics express.

[51]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.