Neurophysiologically-informed markers of individual variability and pharmacological manipulation of human cortical gamma

[1]  Krish D. Singh,et al.  Significant reductions in human visual gamma frequency by the gaba reuptake inhibitor tiagabine revealed by robust peak frequency estimation , 2016, Human brain mapping.

[2]  S. Kochen,et al.  Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography , 2016, Cortex.

[3]  R. Moran,et al.  Inputs to prefrontal cortex support visual recognition in the aging brain , 2016, Scientific Reports.

[4]  Karl J. Friston,et al.  Computational modelling of movement-related beta-oscillatory dynamics in human motor cortex☆ , 2016, NeuroImage.

[5]  Raymond J. Dolan,et al.  Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations , 2016, NeuroImage.

[6]  Judith E. Hall,et al.  Evidence that Subanesthetic Doses of Ketamine Cause Sustained Disruptions of NMDA and AMPA-Mediated Frontoparietal Connectivity in Humans , 2015, The Journal of Neuroscience.

[7]  D. Mathalon,et al.  Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It's About Time. , 2015, JAMA psychiatry.

[8]  Karl J. Friston,et al.  Attentional Enhancement of Auditory Mismatch Responses: a DCM/MEG Study , 2015, Cerebral cortex.

[9]  Pat Levitt,et al.  Neurodevelopment and the Origins of Brain Disorders , 2015, Neuropsychopharmacology.

[10]  Karl J. Friston,et al.  Losing Control Under Ketamine: Suppressed Cortico-Hippocampal Drive Following Acute Ketamine in Rats , 2015, Neuropsychopharmacology.

[11]  S. Muthukumaraswamy The use of magnetoencephalography in the study of psychopharmacology (pharmaco-MEG) , 2014, Journal of psychopharmacology.

[12]  Henry J. Alitto,et al.  Simultaneous Recordings from the Primary Visual Cortex and Lateral Geniculate Nucleus Reveal Rhythmic Interactions and a Cortical Source for Gamma-Band Oscillations , 2014, The Journal of Neuroscience.

[13]  Karl J. Friston,et al.  Contrast gain control and horizontal interactions in V1: A DCM study , 2014, NeuroImage.

[14]  Karl J. Friston,et al.  The Computational Anatomy of Psychosis , 2013, Front. Psychiatry.

[15]  Krish D. Singh,et al.  Visual gamma oscillations: The effects of stimulus type, visual field coverage and stimulus motion on MEG and EEG recordings , 2013, NeuroImage.

[16]  David J. Nutt,et al.  The effects of elevated endogenous GABA levels on movement-related network oscillations , 2013, NeuroImage.

[17]  Karl J. Friston,et al.  Dynamic causal modelling of lateral interactions in the visual cortex , 2013, NeuroImage.

[18]  D. Leopold,et al.  Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex , 2012, Current Biology.

[19]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[20]  N. Kopell,et al.  Thalamic model of awake alpha oscillations and implications for stimulus processing , 2012, Proceedings of the National Academy of Sciences.

[21]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[22]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[23]  P. Fries,et al.  Magnetoencephalography in Twins Reveals a Strong Genetic Determination of the Peak Frequency of Visually Induced Gamma-Band Synchronization , 2012, The Journal of Neuroscience.

[24]  Karl J. Friston,et al.  An In Vivo Assay of Synaptic Function Mediating Human Cognition , 2011, Current Biology.

[25]  Karl J. Friston,et al.  Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents , 2011, PloS one.

[26]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[27]  M. Siegel,et al.  A framework for local cortical oscillation patterns , 2011, Trends in Cognitive Sciences.

[28]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[29]  J. Jefferys,et al.  High‐frequency gamma oscillations coexist with low‐frequency gamma oscillations in the rat visual cortex in vitro , 2010, The European journal of neuroscience.

[30]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[31]  Derek K. Jones,et al.  Visual gamma oscillations and evoked responses: Variability, repeatability and structural MRI correlates , 2010, NeuroImage.

[32]  Fiona E. N. LeBeau,et al.  Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro , 2010, Front. Neural Circuits.

[33]  Krish D. Singh,et al.  Orientation Discrimination Performance Is Predicted by GABA Concentration and Gamma Oscillation Frequency in Human Primary Visual Cortex , 2009, The Journal of Neuroscience.

[34]  Jeremy R. Manning,et al.  Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans , 2009, The Journal of Neuroscience.

[35]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[36]  Krish D. Singh,et al.  Functional decoupling of BOLD and gamma‐band amplitudes in human primary visual cortex , 2009, Human brain mapping.

[37]  Raymond J. Dolan,et al.  Dynamic causal models of steady-state responses , 2009, NeuroImage.

[38]  Roger D. Traub,et al.  Rhythm Generation through Period Concatenation in Rat Somatosensory Cortex , 2008, PLoS Comput. Biol..

[39]  Karl J. Friston,et al.  The functional anatomy of the MMN: A DCM study of the roving paradigm , 2008, NeuroImage.

[40]  A. Thiele,et al.  Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 , 2008, The European journal of neuroscience.

[41]  Lucy M. Carracedo,et al.  Period Concatenation Underlies Interactions between Gamma and Beta Rhythms in Neocortex , 2008, Frontiers in cellular neuroscience.

[42]  K. Zilles,et al.  Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex , 2007, Brain Structure and Function.

[43]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[44]  Wolfgang Maass,et al.  Cerebral Cortex Advance Access published February 15, 2006 A Statistical Analysis of Information- Processing Properties of Lamina-Specific , 2022 .

[45]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[46]  T. Yoshimoto,et al.  Recent Advances in Biomagnetism , 2007 .

[47]  Robert Oostenveld,et al.  Localizing human visual gamma-band activity in frequency, time and space , 2006, NeuroImage.

[48]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[49]  Krish D. Singh,et al.  Induced visual illusions and gamma oscillations in human primary visual cortex , 2004, The European journal of neuroscience.

[50]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[51]  Karl J. Friston Volterra kernels and effective connectivity , 2003 .

[52]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[54]  J. Vrba,et al.  Signal processing in magnetoencephalography. , 2001, Methods.

[55]  N. O. Dalby GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors , 2000, Neuropharmacology.

[56]  M. Whittington,et al.  Gamma and beta frequency oscillations in response to novel auditory stimuli: A comparison of human electroencephalogram (EEG) data with in vitro models. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Traub,et al.  Disruption of synchronous gamma oscillations in the rat hippocampal slice: A common mechanism of anaesthetic drug action , 1998, British journal of pharmacology.

[58]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[59]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[60]  A. Roepstorff,et al.  Factors contributing to the decay of the stimulus-evoked IPSC in rat hippocampal CA1 neurons. , 1994, Journal of neurophysiology.

[61]  A. Fink-Jensen,et al.  The gamma-aminobutyric acid (GABA) uptake inhibitor, tiagabine, increases extracellular brain levels of GABA in awake rats. , 1992, European journal of pharmacology.

[62]  B. Gähwiler,et al.  Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. , 1992, Journal of neurophysiology.

[63]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[64]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.