Quantum molecular modeling of hyaluronan

Abstract Molecular modeling of the secondary structure of hyaluronan is presented on the basis of the following molecular models: GlcA , GlcNAc , GlcA 1 → 3 GlcNAc , GlcNAc 1 → 4 GlcA , GlcNAc 1 → 4 GlcA 1 → 3 GlcNAc and GlcA 1 → 3 GlcNAc 1 → 4 GlcA . The optimized geometries of the monosaccharides obtained using AM1 and ab initio STO-3G methods are in good agreement with the crystallographic data. The flexibility of the β 1 → 3 and β 1 → 4 linkages was studied using AM1 and ab initio HF/3-21G methods. Our study shows that in all cases the β 1 → 3 linkage is more flexible than the β 1 → 4 linkage. The minimal energy conformations of the di- and trisaccharides studied correspond to a compact conformation for the β 1 → 3 linkage and to standard conformations in agreement with the left-handed helices of sodium hyaluronate or calcium hyaluronate. The electrostatic properties and the frontier orbital characteristics obtained at the HF/3-21G level are discussed.

[1]  W. Pigman,et al.  Hyaluronic acid and the ORD reaction , 1959 .

[2]  D. Bakoš,et al.  Depolymerization reactions of hyaluronic acid in solution. , 1994, International journal of biological macromolecules.

[3]  A. Brass,et al.  Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. , 1991, The Biochemical journal.

[4]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[5]  J. Scott,et al.  Extracellular matrix, supramolecular organisation and shape. , 1995, Journal of anatomy.

[6]  L. Lerner,et al.  The solution conformation of hyaluronan: a combined NMR and molecular dynamics study. , 1994, Biochemistry.

[7]  S. Arnott,et al.  Hyaluronic acid: structure of a fully extended 3-fold helical sodium salt and comparison with the less extended 4-fold helical forms. , 1975, Journal of molecular biology.

[8]  D. Evered,et al.  The biology of hyaluronan. , 1989, Ciba Foundation symposium.

[9]  S. Arnott,et al.  Hyaluronic acid: molecular conformations and interactions in two sodium salts. , 1980, Journal of molecular biology.

[10]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[11]  G. Klopman,et al.  Chemical reactivity and the concept of charge- and frontier-controlled reactions , 1968 .

[12]  G. Martin,et al.  Werner’s Syndrome and Human Aging , 1985, Advances in Experimental Medicine and Biology.

[13]  S. Mann,et al.  Ciba Foundation Symposium , 1997 .

[14]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[15]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[16]  E. Hay,et al.  Cell Biology of Extracellular Matrix , 1988, Springer US.

[17]  S. Arnott,et al.  Hyaluronic acid: the role of divalent cations in conformation and packing. , 1977, Journal of molecular biology.

[18]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[19]  J. Scott Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[20]  John E. Scott The chemical morphology of the vitreous , 1992, Eye.

[21]  S. Srinivasan,et al.  Lipoprotein-hyaluronate associations in human aorta fibrous plaque lesions. , 1980, Atherosclerosis.

[22]  E. Balazs,et al.  Chemistry and molecular biology of the intercellular matrix , 1970 .

[23]  W. Bonner,et al.  THE PRESENCE OF HYALURONIDASE IN VARIOUS MAMMALIAN TISSUES. , 1963, The Journal of biological chemistry.