Mechanism of scaffolding-assisted viral assembly.

[1]  C. Teschke,et al.  GroEL and GroES Control of Substrate Flux in the in Vivo Folding Pathway of Phage P22 Coat Protein* , 1998, The Journal of Biological Chemistry.

[2]  D. R. Thomsen,et al.  Cell-free assembly of the herpes simplex virus capsid , 1994, Journal of virology.

[3]  D. Stuart,et al.  The atomic structure of the bluetongue virus core , 1998, Nature.

[4]  M. Rossmann,et al.  Atomic structure of the degraded procapsid particle of the bacteriophage G4: induced structural changes in the presence of calcium ions and functional implications. , 1996, Journal of molecular biology.

[5]  P. Prevelige,et al.  Functional domains of bacteriophage P22 scaffolding protein. , 1998, Journal of molecular biology.

[6]  H. Michel,et al.  Structural transitions during bacteriophage HK97 head assembly. , 1995, Journal of molecular biology.

[7]  S. Casjens Molecular organization of the bacteriophage P22 coat protein shell. , 1979, Journal of molecular biology.

[8]  Efficient herpes simplex virus type 1 (HSV-1) capsid formation directed by the varicella-zoster virus scaffolding protein requires the carboxy-terminal sequences from the HSV-1 homologue. , 1997, The Journal of general virology.

[9]  S. Hafenstein,et al.  φX174 Genome-Capsid Interactions Influence the Biophysical Properties of the Virion: Evidence for a Scaffolding-Like Function for the Genome during the Final Stages of Morphogenesis , 2002, Journal of Virology.

[10]  J. King,et al.  Scaffolding mutants identifying domains required for P22 procapsid assembly and maturation. , 1996, Virology.

[11]  R. Hendrix,et al.  Assembly in vitro of bacteriophage HK97 proheads. , 1995, Journal of molecular biology.

[12]  E. S. Tessman,et al.  Bacterial rep- mutations that block development of small DNA bacteriophages late in infection , 1976, Journal of virology.

[13]  T. Dokland,et al.  In vitro assembly of bacteriophage P4 procapsids from purified capsid and scaffolding proteins. , 2000, Virology.

[14]  N. Sternberg Properties of a mutant of Escherichia coli defective in bacteriophage lambda head formation (groE). I. Initial characterization. , 1973, Journal of molecular biology.

[15]  K. Nakano,et al.  Nucleotide sequence of the genome of the bacteriophage α3: interrelationship of the genome structure and the gene products with those of the phages, θX174, G4 and θK , 1992 .

[16]  A. Lesk,et al.  Determinants of a protein fold. Unique features of the globin amino acid sequences. , 1987, Journal of molecular biology.

[17]  L. Tsui,et al.  Role of the host in virus assembly: cloning of the Escherichia coli groE gene and identification of its protein product. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[18]  H. Fujisawa,et al.  Characterization of the bacteriophage T3 DNA packaging reaction in vitro in a defined system. , 1987, Journal of molecular biology.

[19]  J. King,et al.  Purification of the coat and scaffolding proteins from procapsids of bacteriophage P22. , 1981, Virology.

[20]  A. Kwong,et al.  Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein , 1996, Journal of virology.

[21]  B. Fane,et al.  Second-site suppressors of a cold-sensitive prohead accessory protein of bacteriophage phi X174. , 1991, Genetics.

[22]  D. Botstein,et al.  Intermediates in the synthesis of phage P22 DNA. , 1968, Cold Spring Harbor symposia on quantitative biology.

[23]  E. Hunter,et al.  Separate Assembly and Transport Domains within the Gag Precursor of Mason-Pfizer Monkey Virus , 1999, Journal of Virology.

[24]  T S Baker,et al.  The structure of isometric capsids of bacteriophage T4. , 2001, Virology.

[25]  J. Williams,et al.  Morphopoietic switch mutations of bacteriophage P2. , 1991, Virology.

[26]  P. Prevelige,et al.  Bacteriophage P22 scaffolding protein forms oligomers in solution. , 1997, Journal of molecular biology.

[27]  P. Serwer,et al.  DNA packaging in vitro by an isolated bacteriophage T7 procapsid , 1982, Journal of virology.

[28]  Foreign and Chimeric External Scaffolding Proteins as Inhibitors of Microviridae Morphogenesis , 2000, Journal of Virology.

[29]  M. Rossmann,et al.  DNA packaging intermediates of bacteriophage φX174. , 1995, Structure.

[30]  J. King,et al.  Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. , 1988, Journal of molecular biology.

[31]  A. Oppenheim,et al.  Production and purification of SV40 major capsid protein (VP1) in Escherichia coli strains deficient for the GroELS chaperone machine. , 2000, Journal of biotechnology.

[32]  D. Botstein,et al.  Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. , 1973, Journal of molecular biology.

[33]  P. Prevelige,et al.  Kinetic and calorimetric evidence for two distinct scaffolding protein binding populations within the bacteriophage P22 procapsid. , 2001, Biochemistry.

[34]  M. Rossmann,et al.  Atomic structure of single-stranded DNA bacteriophage ΦX174 and its functional implications , 1991, Nature.

[35]  B. Fane,et al.  Efficient complementation by chimeric Microviridae internal scaffolding proteins is a function of the COOH-terminus of the encoded protein. , 2000, Virology.

[36]  Carl Gunnar Fossdal,et al.  Bacteriophage P4 capsid-size determination and its relationship to P2 helper interference. , 1996, Virology.

[37]  M. Rossmann,et al.  The role of scaffolding proteins in the assembly of the small, single-stranded DNA virus phiX174. , 1999, Journal of molecular biology.

[38]  D. Anderson,et al.  Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: preliminary isolation and characterization of intermediate particles of the assembly pathway , 1976, Journal of virology.

[39]  J. King,et al.  Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. , 1993, Biophysical journal.

[40]  The bovine herpesvirus 1 maturational proteinase and scaffold proteins can substitute for the homologous herpes simplex virus type 1 proteins in the formation of hybrid type B capsids , 1995, Journal of virology.

[41]  J. King,et al.  Assembly-controlled autogenous modulation of bacteriophage P22 scaffolding protein gene expression , 1985, Journal of virology.

[42]  Bart Barrell,et al.  The nucleotide sequence of bacteriophage φX174 , 1978 .

[43]  R. Hendrix,et al.  Genetic basis of bacteriophage HK97 prohead assembly. , 1995, Journal of molecular biology.

[44]  C. Bazinet,et al.  The DNA translocating vertex of dsDNA bacteriophage. , 1985, Annual review of microbiology.

[45]  J. King,et al.  Purification and organization of the gene 1 portal protein required for phage P22 DNA packaging. , 1988, Biochemistry.

[46]  R. Garcea,et al.  In vivo and in vitro association of hsc70 with polyomavirus capsid proteins , 1995, Journal of Virology.

[47]  B. Fane,et al.  Identification of sites influencing the folding and subunit assembly of the P22 tailspike polypeptide chain using nonsense mutations. , 1987, Genetics.

[48]  S. Harrison,et al.  Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. , 2001, Journal of molecular biology.

[49]  J. Maizel,et al.  T7-directed protein synthesis. , 1969, Virology.

[50]  J. King,et al.  Structure of phage P22 coat protein aggregates formed in the absence of the scaffolding protein. , 1978, Journal of molecular biology.

[51]  R. Hendrix,et al.  Bacteriophage HK97 head assembly. , 1995, FEMS microbiology reviews.

[52]  S. Tonegawa,et al.  Intermediates in the assembly of φX174 , 1970 .

[53]  A. Steven,et al.  Conformational changes of a viral capsid protein. Thermodynamic rationale for proteolytic regulation of bacteriophage T4 capsid expansion, co-operativity, and super-stabilization by soc binding. , 1992, Journal of molecular biology.

[54]  M. Showe,et al.  Assembly core of bacteriophage T4: an intermediate in head formation. , 1973, Nature: New biology.

[55]  W. Chiu,et al.  Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-lacking P22 procapsids. , 1999, Biophysical journal.

[56]  S. Casjens,et al.  Initiation of sequential packaging of bacteriophage P22 DNA. , 1982, Journal of molecular biology.

[57]  D. Botstein,et al.  Encapsulation of phage P22 DNA in vitro. , 1979, Virology.

[58]  J. King,et al.  Inhibition of viral capsid assembly by 1,1'-bi(4-anilinonaphthalene-5-sulfonic acid). , 1993, Biochemistry.

[59]  B. Fane,et al.  Cross-functional analysis of the Microviridae internal scaffolding protein. , 1999, Journal of molecular biology.

[60]  J. King,et al.  DNA injection proteins are targets of acridine-sensitized photoinactivation of bacteriophage P22. , 1984, Journal of molecular biology.

[61]  J. Navaza,et al.  The Fusion Glycoprotein Shell of Semliki Forest Virus An Icosahedral Assembly Primed for Fusogenic Activation at Endosomal pH , 2001, Cell.

[62]  D. Botstein,et al.  Packaging of an oversize transducing genome by Salmonella phage P22. , 1974, Journal of molecular biology.

[63]  Michael G. Rossmann,et al.  Structure of a viral procapsid with molecular scaffolding , 1997, Nature.

[64]  M. Farber Purification and properties of bacteriophage phi X 174 gene D product , 1976, Journal of virology.

[65]  D. Botstein,et al.  Purification and properties of proteins essential to DNA encapsulation by phage P22. , 1979, Virology.

[66]  M. Hayashi,et al.  Role of the gene B product in bacteriophage φX174 development , 1974 .

[67]  W. Chiu,et al.  Seeing the herpesvirus capsid at 8.5 A. , 2000, Science.

[68]  D. Botstein,et al.  Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. II. Morphogenetic pathway. , 1973, Journal of molecular biology.

[69]  E. Hunter,et al.  Importance of p12 protein in Mason-Pfizer monkey virus assembly and infectivity , 1992, Journal of virology.

[70]  T. Baker,et al.  Three-Dimensional Structure of Aleutian Mink Disease Parvovirus: Implications for Disease Pathogenicity , 1999, Journal of Virology.

[71]  S. Casjens,et al.  Autoregulation of the bacteriophage P22 scaffolding protein gene , 1985, Journal of virology.

[72]  E. Hunter,et al.  Synthesis and assembly of retrovirus Gag precursors into immature capsids in vitro , 1996, Journal of virology.

[73]  F. Eiserling,et al.  Studies on the morphopoiesis of the head of phage T-even. 3. The cores of head-related structures. , 1967, Journal of ultrastructure research.

[74]  J. King,et al.  Folding and Stability of Mutant Scaffolding Proteins Defective in P22 Capsid Assembly* , 1999, The Journal of Biological Chemistry.

[75]  P. Desai,et al.  Second site mutations in the N-terminus of the major capsid protein (VP5) overcome a block at the maturation cleavage site of the capsid scaffold proteins of herpes simplex virus type 1. , 1999, Virology.

[76]  S. Casjens,et al.  Analysis in vivo of the bacteriophage P22 headful nuclease. , 1988, Journal of molecular biology.

[77]  B. Hohn DNA sequences necessary for packaging of bacteriophage lambda DNA. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[78]  J. King,et al.  Three-dimensional transformation of capsids associated with genome packaging in a bacterial virus. , 1993, Journal of molecular biology.

[79]  T Larsen,et al.  The capsid size-determining protein Sid forms an external scaffold on phage P4 procapsids. , 1995, Journal of molecular biology.

[80]  J. King,et al.  Conformational transformations in the protein lattice of phage P22 procapsids. , 1993, Biophysical journal.

[81]  Second-site mutations encoding residues 34 and 78 of the major capsid protein (VP5) of herpes simplex virus type 1 are important for overcoming a blocked maturation cleavage site of the capsid scaffold proteins. , 2000, Virology.

[82]  B L Trus,et al.  Molecular architecture of bacteriophage T4 capsid: vertex structure and bimodal binding of the stabilizing accessory protein, Soc. , 2000, Virology.

[83]  J Jakana,et al.  Three-dimensional structure of scaffolding-containing phage p22 procapsids by electron cryo-microscopy. , 1996, Journal of molecular biology.

[84]  N. C. Price,et al.  The Herpes Simplex Virus Triplex Protein, VP23, Exists as a Molten Globule , 1998, Journal of Virology.

[85]  D L Caspar,et al.  Movement and self-control in protein assemblies. Quasi-equivalence revisited. , 1980, Biophysical journal.

[86]  W Chiu,et al.  Role of the scaffolding protein in P22 procapsid size determination suggested by T = 4 and T = 7 procapsid structures. , 1998, Biophysical Journal.

[87]  D. Botstein,et al.  P22 morphogenesis. II: Mechanism of DNA encapsulation. , 1974, Journal of supramolecular structure.

[88]  P. Prevelige,et al.  Cloning, purification, and preliminary characterization by circular dichroism and NMR of a carboxyl‐terminal domain of the bacteriophage P22 scaffolding protein , 1997, Protein science : a publication of the Protein Society.

[89]  J. King,et al.  Binding of scaffolding subunits within the P22 procapsid lattice. , 1994, Virology.

[90]  J. King,et al.  Structural studies of P22 phage, precursor particles, and proteins by laser Raman spectroscopy. , 1982, Biochemistry.

[91]  W. Chiu,et al.  Roles of Triplex and Scaffolding Proteins in Herpes Simplex Virus Type 1 Capsid Formation Suggested by Structures of Recombinant Particles , 1999, Journal of Virology.

[92]  E. Six,et al.  Capsid size determination in the P2-P4 bacteriophage system: suppression of sir mutations in P2's capsid gene N by supersid mutations in P4's external scaffold gene sid. , 2001, Virology.

[93]  R. Kurumbail,et al.  Three-dimensional structure of human cytomegalovirus protease , 1996, Nature.

[94]  H. Fujisawa,et al.  Early events in DNA packaging in a defined in vitro system of bacteriophage T3. , 1987, Virology.

[95]  B. Trus,et al.  Assembly of the Herpes Simplex Virus Procapsid from Purified Components and Identification of Small Complexes Containing the Major Capsid and Scaffolding Proteins , 1999, Journal of Virology.

[96]  J. Rosenberg,et al.  Complexes between chaperonin GroEL and the capsid protein of bacteriophage HK97. , 1995, Biochemistry.

[97]  Assembly of herpes simplex virus capsids using the human cytomegalovirus scaffold protein: critical role of the C terminus , 1997, Journal of virology.

[98]  K. Spindler,et al.  DNA synthesis in Escherichia coli cells infected with gene H mutants of bacteriophage phi X174 , 1979, Journal of virology.

[99]  J. King,et al.  Control of the synthesis of phage p22 scaffolding protein is coupled to capsid assembly , 1978, Cell.

[100]  J. King,et al.  P22 morphogenesis. I: Catalytic scaffolding protein in capsid assembly. , 1974, Journal of supramolecular structure.

[101]  P. Prevelige,et al.  A helical coat protein recognition domain of the bacteriophage P22 scaffolding protein. , 1998, Journal of molecular biology.

[102]  S. Harrison,et al.  Assembly of the head of bacteriophage P22: x-ray diffraction from heads, proheads and related structures. , 1976, Journal of molecular biology.

[103]  S. Casjens,et al.  Posttranscriptional modulation of bacteriophage P22 scaffolding protein gene expression , 1985, Journal of virology.

[104]  R. Garcea,et al.  Polymorphism in the assembly of polyomavirus capsid protein VP1. , 1989, Biophysical journal.

[105]  J. Culp,et al.  Unique fold and active site in cytomegalovirus protease , 1996, Nature.

[106]  Richard Earl Dickerson,et al.  Hemoglobin : structure, function, evolution, and pathology , 1983 .

[107]  A C Steven,et al.  Virus Maturation Involving Large Subunit Rotations and Local Refolding , 2001, Science.

[108]  P. Jardine,et al.  The bacteriophage T4 DNA packaging apparatus targets the unexpanded prohead. , 1998, Journal of molecular biology.

[109]  Simon C Watkins,et al.  The size and symmetry of B capsids of herpes simplex virus type 1 are determined by the gene products of the UL26 open reading frame , 1994, Journal of virology.

[110]  P. Guo,et al.  Sequential interactions of structural proteins in phage phi 29 procapsid assembly , 1995, Journal of virology.

[111]  J. King,et al.  The DNA injection apparatus of phage p22. , 1986, Biophysical journal.

[112]  H. Erickson,et al.  The role of subunit entropy in cooperative assembly. Nucleation of microtubules and other two-dimensional polymers. , 1981, Biophysical journal.

[113]  B. Trus,et al.  The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. , 1996, Journal of molecular biology.

[114]  M. Rossmann,et al.  Locations of Carbohydrate Sites on Alphavirus Glycoproteins Show that E1 Forms an Icosahedral Scaffold , 2001, Cell.

[115]  P. Weigele,et al.  Structure of the coat protein-binding domain of the scaffolding protein from a double-stranded DNA virus. , 2000, Journal of molecular biology.

[116]  R. Jaenicke,et al.  Folding of homologous proteins. The refolding of different ribonucleases is independent of sequence variations, proline content and glycosylation. , 1983, Journal of molecular biology.

[117]  Thierry Bajou,et al.  De La Tour , 1985 .

[118]  A. Aoyama,et al.  Proteolysis of bacteriophage phi X174 prohead protein gpB by a protease located in the Escherichia coli outer membrane , 1988, Journal of bacteriology.

[119]  A C Steven,et al.  Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. , 1995, Journal of molecular biology.

[120]  W. Chiu,et al.  Structural biology of viruses , 1997 .

[121]  G. Christie,et al.  Interactions between satellite bacteriophage P4 and its helpers. , 1990, Annual review of genetics.

[122]  W. Newcomb,et al.  Phenotype of the herpes simplex virus type 1 protease substrate ICP35 mutant virus , 1994, Journal of virology.

[123]  P. Prevelige,et al.  A pilot protein participates in the initiation of P22 procapsid assembly. , 1991, Virology.

[124]  T. Baker,et al.  Regulation of the phage phi 29 prohead shape and size by the portal vertex. , 1991, Virology.

[125]  The C-terminal 25 amino acids of the protease and its substrate ICP35 of herpes simplex virus type 1 are involved in the formation of sealed capsids , 1995, Journal of virology.

[126]  V. Israel E proteins of bacteriophage P22. I. Identification and ejection from wild-type and defective particles , 1977, Journal of virology.

[127]  D Botstein,et al.  Non-random circular permutation of phage P22 DNA. , 1974, Journal of molecular biology.

[128]  R. Young,et al.  Genetic evidence that the bacteriophage phi X174 lysis protein inhibits cell wall synthesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[129]  J H Miller,et al.  Genetic studies of the lac repressor. IX. Generation of altered proteins by the suppression of nonsence mutations. , 1979, Journal of molecular biology.

[130]  J. King,et al.  In Vitro Unfolding/Refolding of Wild Type Phage P22 Scaffolding Protein Reveals Capsid-binding Domain* , 1999, The Journal of Biological Chemistry.

[131]  B. Trus,et al.  Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. , 1993, Journal of molecular biology.

[132]  J. King,et al.  Assembly in vitro of bacteriophage P22 procapsids from purified coat and scaffolding subunits. , 1982, Journal of molecular biology.

[133]  D. Botstein,et al.  Structure and assembly of the capsid of bacteriophage P22. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[134]  J. King,et al.  Catalytic head assembling protein in virus morphogenesis , 1974, Nature.

[135]  C. Georgopoulos,et al.  Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product). , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[136]  M. S. Chapman,et al.  Structure, sequence, and function correlations among parvoviruses. , 1993, Virology.

[137]  F. Homa,et al.  Assembly of the Herpes Simplex Virus Capsid: Preformed Triplexes Bind to the Nascent Capsid , 1998, Journal of Virology.

[138]  B. Trus,et al.  Isolation of Herpes Simplex Virus Procapsids from Cells Infected with a Protease-Deficient Mutant Virus , 2000, Journal of Virology.

[139]  P. Prevelige,et al.  Structural transitions in the scaffolding and coat proteins of P22 virus during assembly and disassembly. , 1996, Biochemistry.

[140]  M. Rossmann,et al.  Analysis of the single-stranded DNA bacteriophage phi X174, refined at a resolution of 3.0 A. , 1994, Journal of molecular biology.

[141]  J. King,et al.  Selective in vivo rescue by GroEL/ES of thermolabile folding intermediates to phage P22 structural proteins. , 1994, The Journal of biological chemistry.

[142]  P. Prevelige,et al.  Electrostatic interactions drive scaffolding/coat protein binding and procapsid maturation in bacteriophage P22. , 1998, Virology.

[143]  W. Chiu,et al.  Identification of the sites of interaction between the scaffold and outer shell in herpes simplex virus-1 capsids by difference electron imaging. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[144]  P. Bonneau,et al.  A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease , 1996, Nature.