Improved luminescence properties of MoS2 monolayers grown via MOCVD: role of pre-treatment and growth parameters

Fabrication of transition metal dichalcogenides (TMDCs) via metalorganic chemical vapor deposition (MOCVD) represents one of the most attractive routes to large-scale 2D material layers. Although good homogeneity and electrical conductance have been reported recently, the relation between growth parameters and photoluminescence (PL) intensity-one of the most important parameters for optoelectronic applications-has not yet been discussed for MOCVD TMDCs. In this work, MoS2 is grown via MOCVD on sapphire (0001) substrates using molybdenum hexacarbonyl (Mo(CO)6, MCO) and di-tert-butyl sulphide as precursor materials. A prebake step under H2 atmosphere combined with a reduced MCO precursor flow increases the crystal grain size by one order of magnitude and strongly enhances PL intensity with a clear correlation to the grain size. A decrease of the linewidth of both Raman resonances and PL spectra down to full width at half maxima of 3.2 cm-1 for the E 2g Raman mode and 60 meV for the overall PL spectrum indicate a reduced defect density at optimized growth conditions.

[1]  Sefaattin Tongay,et al.  Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. , 2014, Nano letters.

[2]  B. Chakraborty,et al.  Symmetry-dependent phonon renormalization in monolayer MoS2transistor , 2012, Physical Review B.

[3]  J. Robinson,et al.  Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. , 2015, ACS nano.

[4]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[5]  X. Zu,et al.  Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots. , 2013, Physical chemistry chemical physics : PCCP.

[6]  A. Kis,et al.  Suppressing Nucleation in Metal-Organic Chemical Vapor Deposition of MoS2 Monolayers by Alkali Metal Halides. , 2017, Nano letters.

[7]  A. Balan,et al.  Raman Shifts in Electron-Irradiated Monolayer MoS2. , 2016, ACS nano.

[8]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[9]  B. Brennan,et al.  Effect of disorder on Raman scattering of single-layer Mo S 2 , 2015 .

[10]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[11]  Timothy C. Berkelbach,et al.  Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy. , 2015, Nano letters.

[12]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[13]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[14]  M. Bosi Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review , 2015 .

[15]  B. Chakraborty,et al.  Layer-dependent resonant Raman scattering of a few layer MoS2 , 2013 .

[16]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[17]  Cinzia Casiraghi,et al.  Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures. , 2014, ACS nano.

[18]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[19]  Moon J. Kim,et al.  Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. , 2015, ACS nano.

[20]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[21]  Yi Liu,et al.  Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.

[22]  Siya Zhu,et al.  A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets , 2015 .

[23]  Weihua Tang,et al.  Raman and photoluminescence properties of α-Al2O3 microcones with hierarchical and repetitive superstructure , 2010 .

[24]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[25]  Andres Castellanos-Gomez,et al.  The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 , 2013, Nano Research.

[26]  V. Asadchikov,et al.  Supersmooth and modified surface of sapphire crystals: Formation, characterization, and applications in nanotechnologies , 2016 .

[27]  Madan Dubey,et al.  Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition , 2014, Nature Communications.

[28]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[29]  C. Stampfer,et al.  Large-area MoS2 deposition via MOVPE , 2017 .

[30]  Guozhu Zhang,et al.  Shape-Dependent Defect Structures of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. , 2017, ACS applied materials & interfaces.

[31]  Kenichi Kojima,et al.  Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition , 2005 .

[32]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[33]  Daniel Wolverson,et al.  Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 , 2013 .

[34]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[35]  Qiang Sun,et al.  Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. , 2015, Nano letters.

[36]  Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. , 2012, ACS nano.

[37]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[38]  H. Zeng,et al.  Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films , 2012, 1209.1775.

[39]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[40]  Wenhui Wang,et al.  Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding. , 2014, ACS nano.

[41]  Gwo-Ching Wang,et al.  Diffusion-Controlled Epitaxy of Large Area Coalesced WSe2 Monolayers on Sapphire. , 2018, Nano letters.

[42]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[43]  Jiwoong Park,et al.  Atomic-Scale Spectroscopy of Gated Monolayer MoS2. , 2016, Nano letters.