Early animal evolution: emerging views from comparative biology and geology.

The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.

[1]  J. D. Aitken,et al.  Ediacaran remains from intertillite beds in northwestern Canada , 1990 .

[2]  M. Magaritz,et al.  Permian-Triassic of the Tethys: Carbon isotope studies , 1989 .

[3]  C. Kenyon,et al.  A homeotic gene cluster patterns the anteroposterior body axis of C. elegans , 1993, Cell.

[4]  A. J. Kaufman,et al.  Biostratigraphic and Geochronologic Constraints on Early Animal Evolution , 1995, Science.

[5]  P. Ingham,et al.  Transcription pattern of the Drosophila segmentation gene hairy , 1985, Nature.

[6]  B. Runnegar Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit , 1982 .

[7]  S. Carroll,et al.  Selector Genes and Limb Identity in Arthropods and Vertebrates , 1999, Cell.

[8]  N. Pierce Origin of Species , 1914, Nature.

[9]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[10]  S. Stickel,et al.  Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.

[11]  R. Maas,et al.  Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode. , 1997, Development.

[12]  W. Gehring,et al.  Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. , 1994, Science.

[13]  Robert Blair Vocci Geology , 1882, Nature.

[14]  J. W. Valentine,et al.  Fossils, molecules and embryos: new perspectives on the Cambrian explosion. , 1999, Development.

[15]  K. Towe Oxygen-collagen priority and the early metazoan fossil record. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[16]  P. Cloud Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. , 1968, Science.

[17]  D. Penny,et al.  Testing the Cambrian explosion hypothesis by using a molecular dating technique. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. R. Strathmann Hypotheses on the Origins of Marine Larvae , 1993 .

[19]  M. Glaessner The Dawn of Animal Life: A Biohistorical Study , 1985 .

[20]  M. Frasch,et al.  msh may play a conserved role in dorsoventral patterning of the neuroectoderm and mesoderm , 1996, Mechanisms of Development.

[21]  J. Finnerty,et al.  Homeobox genes in the Ctenophora: identification of paired-type and Hox homologues in the atentaculate ctenophore, Beroë ovata. , 1996, Molecular marine biology and biotechnology.

[22]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[23]  G. Rouse,et al.  Life history evolution of marine invertebrates: New views from phylogenetic systematics. , 1998, Trends in ecology & evolution.

[24]  E. Herniou,et al.  Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. , 1999, Science.

[25]  J. Gibert,et al.  Molecules and the body plan: the Hox genes of Cirripedes (Crustacea). , 1998, Molecular phylogenetics and evolution.

[26]  N. Butterfield Plankton ecology and the Proterozoic-Phanerozoic transition , 1997, Paleobiology.

[27]  G. Balavoine,et al.  One or Three Cambrian Radiations? , 1998, Science.

[28]  M. A. McClure,et al.  Origins and Evolutionary Relationships of Retroviruses , 1989, The Quarterly Review of Biology.

[29]  Craig Nelson,et al.  Hox genes and the evolution of vertebrate axial morphology. , 1995, Development.

[30]  S. Morris Early Metazoan Evolution: Reconciling Paleontology and Molecular Biology' , 1998 .

[31]  S. Carroll,et al.  The origin and evolution of animal appendages. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  I. Yamauchi The Comparative Physiology of Respiratory Mechanisms , 1941 .

[33]  A. Knoll,et al.  Calibrating rates of early Cambrian evolution. , 1993, Science.

[34]  M. Brasier Towards a carbon isotope stratigraphy of the Cambrian System: potential of the Great Basin succession , 1993, Geological Society, London, Special Publications.

[35]  D. Eernisse,et al.  Annelida and Arthropoda are Not Sister Taxa: A Phylogenetic Analysis of Spiralian Metazoan Morphology , 1992 .

[36]  J. Finnerty Homeoboxes in sea anemones and other nonbilaterian animals: implications for the evolution of the Hox cluster and the zootype. , 1998, Current topics in developmental biology.

[37]  D. Lockshon,et al.  MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer , 1989, Cell.

[38]  J. Gehling Earliest known echinoderm — a new Ediacaran fossil from the Pound Subgroup of South Australia , 1987 .

[39]  B. Schierwater,et al.  Homology of Hox genes and the zootype concept in early metazoan evolution. , 1998, Molecular phylogenetics and evolution.

[40]  Jeffrey S. Levinton,et al.  Molecular Evidence for Deep Precambrian Divergences Among Metazoan Phyla , 1996, Science.

[41]  Y. Sasai,et al.  A common plan for dorsoventral patterning in Bilateria , 1996, Nature.

[42]  A. J. Kaufman,et al.  Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. , 1994, Geological Society of America bulletin.

[43]  A. Knoll,et al.  The early evolution of eukaryotes: a geological perspective. , 1992, Science.

[44]  C. Kimmel,et al.  Was Urbilateria segmented? , 1996, Trends in genetics : TIG.

[45]  D. Hewett‐Emmett,et al.  Evolution of paired domains: isolation and sequencing of jellyfish and hydra Pax genes related to Pax-5 and Pax-6. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Morris,et al.  Metazoan phylogenies: falling into place or falling to pieces? A palaeontological perspective. , 1998, Current opinion in genetics & development.

[47]  E. Davidson,et al.  A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. , 1999, Development.

[48]  S. Bowring,et al.  Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana , 1998 .

[49]  S. Morris The fossil record and the early evolution of the Metazoa , 1993, Nature.

[50]  E. Robertis,et al.  The ancestry of segmentation , 1997, Nature.

[51]  J. R. Nursall,et al.  Oxygen as a Prerequisite to the Origin of the Metazoa , 1959, Nature.

[52]  J. W. Valentine Cleavage patterns and the topology of the metazoan tree of life. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[54]  L. Salvini-Plawen,et al.  Larval Planktotrophy—A Primitive Trait in the Bilateria? , 1995 .

[55]  A. Seilacher Vendozoa: Organismic construction in the Proterozoic biosphere , 1989 .

[56]  C. W. Thayer,et al.  Comparison of articulate brachiopod nuclear and mitochondrial gene trees leads to a clade–based redefinition of protostomes (Protostomozoa) and deuterostomes (Deuterostomozoa) , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  R. Raff,et al.  Respiratory Mechanisms and the Metazoan Fossil Record , 1970, Nature.

[58]  B. Runnegar Vendobionta or Metazoa? Developments in understanding the Ediacara “fauna” , 1995 .

[59]  J. Lake,et al.  Evidence from 18S ribosomal DNA that the lophophorates are protostome animals , 1995, Science.

[60]  D. McIlroy,et al.  Neonereites uniserialis from c. 600 Ma year old rocks in western Scotland and the emergence of animals , 1998, Journal of the Geological Society.

[61]  F. Schram Animal evolution: Interrelationships of living Phyla , 1995 .

[62]  D. Watt,et al.  Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic Age petroleum and bitumen , 1994 .

[63]  S. Carroll,et al.  Fossils, genes and the evolution of animal limbs , 1997, Nature.

[64]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[65]  N. Lartillot,et al.  Animal evolution. The end of the intermediate taxa? , 1999, Trends in genetics : TIG.

[66]  A. J. Kaufman,et al.  Isotopes, ice ages, and terminal Proterozoic earth history. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. Scott Intimations of a creature , 1994, Cell.

[68]  C. Nielsen Animal Evolution: Interrelationships of the Living Phyla , 1995 .

[69]  P. Gruss,et al.  Current views on eye development , 1997, Trends in Neurosciences.

[70]  Simon Conway Morris,et al.  Wonderful Crucible@@@The Crucible of Creation: The Burgess Shale and the Rise of Animals. , 1998 .

[71]  G. Budd The morphology of Opabinia regalis and the reconstruction of the arthropod stem‐group , 1996 .

[72]  D. Martinez,et al.  Cnidarian homeoboxes and the zootype , 1998, Nature.

[73]  N. Patel,et al.  Crustacean appendage evolution associated with changes in Hox gene expression , 1997, Nature.

[74]  A. Knoll,et al.  A Vendian–Cambrian boundary succession from the northwestern margin of the Siberian Platform: stratigraphy, palaeontology, chemostratigraphy and correlation , 1998, Geological Magazine.

[75]  G. Karlova,et al.  Biostratigraphy of the Vendian-Cambrian beds and the lower Cambrian boundary in Siberia , 1993, Geological Magazine.

[76]  H. Philippe,et al.  How good are deep phylogenetic trees? , 1998, Current opinion in genetics & development.

[77]  A. Knoll,et al.  Radiations and extinctions of plankton in the late Proterozoic and early Cambrian , 1982, Nature.

[78]  N. Williams,et al.  Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. , 1997, Development.

[79]  E. Davidson,et al.  Expression of the Hox gene complex in the indirect development of a sea urchin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Pfluger,et al.  Triploblastic animals more than 1 billion years ago: trace fossil evidence from india , 1998, Science.

[81]  A. Krogh The Comparative Physiology of Respiratory Mechanisms , 1941 .

[82]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[83]  Lethaia , 2022 .

[84]  F. Ayala,et al.  Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[85]  S. Carroll,et al.  Ultrabithorax function in butterfly wings and the evolution of insect wing patterns , 1999, Current Biology.

[86]  Sean Carroll,et al.  Evolution of homeotic gene regulation and function in flies and butterflies , 1994, Nature.

[87]  M. Bate,et al.  Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos. , 1990, Genes & development.

[88]  A. J. Kaufman,et al.  Integrated chronostratigraphy of Proterozoic–Cambrian boundary beds in the western Anabar region, northern Siberia , 1996, Geological Magazine.

[89]  C. Marshall,et al.  The Coming of Age of Molecular Systematics , 1998, Science.

[90]  G. Germs New shelly fossils from Nama Group, South West Africa , 1972 .

[91]  D. Tautz,et al.  A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[92]  M. Fedonkin,et al.  The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism , 1997, Nature.

[93]  S. Carroll,et al.  Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade , 1997, Current Biology.

[94]  S. Morris Eggs and embryos from the Cambrian. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[95]  M. Martindale,et al.  The Development of Radial and Biradial Symmetry: The Evolution of Bilaterality' , 1998 .

[96]  A. J. Kaufman,et al.  Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland , 1986, Nature.

[97]  M. Wills,et al.  The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity , 1996 .

[98]  Peter W. H. Holland,et al.  MAJOR TRANSITIONS IN ANIMAL EVOLUTION : A DEVELOPMENTAL GENETIC PERSPECTIVE , 1998 .

[99]  D. McIlroy,et al.  The Impact of Bioturbation on Infaunal Ecology and Evolution During the Proterozoic-Cambrian Transition , 1999 .

[100]  E. Davidson,et al.  Origin of Bilaterian Body Plans: Evolution of Developmental Regulatory Mechanisms , 1995, Science.

[101]  R. Fortey,et al.  The Early Radiation and Relationships of the Major Arthropod Groups , 1989, Science.

[102]  A. J. Kaufman,et al.  Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes , 1992 .

[103]  J. Lipps,et al.  The Origin and Early Evolution of Metazoa , 1992 .

[104]  C. Nielsen Origin and evolution of animal life cycles , 1998 .

[105]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[106]  M. Sogin,et al.  Evolution of the protists and protistan parasites from the perspective of molecular systematics. , 1998, International journal for parasitology.

[107]  M. Brasier,et al.  A carbon isotope reference scale for the Lower Cambrian succession in Siberia: report of IGCP Project 303 , 1994, Geological Magazine.

[108]  S. Jensen,et al.  Ediacara-type fossils in Cambrian sediments , 1998, Nature.