Processing of MEMPHIS Ka-Band Multibaseline Interferometric SAR Data: From Raw Data to Digital Surface Models

MEMPHIS is an experimental millimeter-wave synthetic aperture radar (SAR) system that acquires cross-track multibaseline interferometric data at high resolution in a single pass, using four receive horns. In this paper, we present the SAR system and navigation data, and propose a processing chain from the raw data input to a digital surface model (DSM) output. This processing chain includes full bandwidth reconstruction of the steppedfrequency SAR data, azimuth focusing with an Extended Omega-K algorithm, generation ofinterferograms for each available baseline, phase unwrapping using the multibaseline data, and phaseto-height conversion. The hardware and processing chain were validated through the analysis of experimental Ka-band data. The SAR image resolution was measured with point targets and found to be ~2% and ~15% coarser than the theoretical value in range and azimuth, respectively. The geolocation accuracy was typically better than 0.1 m in range and 0.2 m in azimuth. Observed depression angledependent interferometric phase errors were successfully removed using a correction function derived from the InSAR data. Investigation of the interferometric phase noise showed the utility of a multibaseline antenna setup; the number of looks and filter size used for the DSM generation were also derived from this analysis. The results showed that in grassland areas, the height difference between the ~2 m-resolution InSAR DSMs and the reference ALS models was 0 ± 0.25 m.

[1]  Uwe Stilla,et al.  Maximum-likelihood estimation for multi-aspect multi-baseline SAR interferometry of urban areas , 2014 .

[2]  Jordi J. Mallorquí,et al.  Comparison of Topography- and Aperture-Dependent Motion Compensation Algorithms for Airborne SAR , 2007, IEEE Geoscience and Remote Sensing Letters.

[3]  Michael Inggs,et al.  Stepped-frequency processing by reconstruction of target reflectivity spectrum , 1998, Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214).

[4]  Helmut Essen,et al.  MEMPHIS-a fully polarimetric experimental radar , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[5]  Helmut Essen,et al.  Multibaseline interferometric SAR at millimeterwaves test of an algorithm on real data and a synthetic scene , 2007, SPIE Remote Sensing.

[6]  Andreas R. Brenner,et al.  Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR , 2008, IEEE Trans. Geosci. Remote. Sens..

[7]  Curtis W. Chen Statistical-cost network-flow approaches to two-dimensional phase unwrapping for radar interferometry , 2001 .

[8]  Mats I. Pettersson,et al.  Definition on SAR image quality measurements for UWB SAR , 2008, Remote Sensing.

[9]  Michael Unser,et al.  B-spline signal processing. I. Theory , 1993, IEEE Trans. Signal Process..

[10]  Akram Aldroubi,et al.  B-SPLINE SIGNAL PROCESSING: PART I-THEORY , 1993 .

[11]  Delwyn Moller,et al.  The Glacier and Land Ice Surface Topography Interferometer: An Airborne Proof-of-Concept Demonstration of High-Precision Ka-Band Single-Pass Elevation Mapping , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Jordi J. Mallorquí,et al.  Interpolation-free coregistration and phase-correction of airborne SAR interferograms , 2004, IEEE Geoscience and Remote Sensing Letters.

[13]  Fabrizio Lombardini,et al.  Optimum and Suboptimum Estimator Performance for Multibaseline InSAR , 2001 .

[14]  Pascale Dubois-Fernandez,et al.  The ONERA RAMSES SAR system , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[15]  Andreas Reigber,et al.  Performance of the P-band subsystem and the X-band interferometer of the F-SAR airborne SAR instrument , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[16]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[17]  Alberto Moreira,et al.  Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation , 2006 .

[18]  Alberto Moreira,et al.  Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes , 1996, IEEE Trans. Geosci. Remote. Sens..

[19]  P. Dreuillet,et al.  ONERA SAR facilities , 2011, IEEE Aerospace and Electronic Systems Magazine.

[20]  Pierfrancesco Lombardo,et al.  Multi-baseline SAR interferometry for terrain slope adaptivity , 1997, Proceedings of the 1997 IEEE National Radar Conference.

[21]  Akram Aldroubi,et al.  B-SPLINE SIGNAL PROCESSING: PART II-EFFICIENT DESIGN AND APPLICATIONS , 1993 .

[22]  Andreas R. Brenner,et al.  Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Felix Morsdorf,et al.  Uncertainty assessment of multi-temporal airborne laser scanning data: A case study on an Alpine glacier , 2012 .

[24]  Gonzalo R. Arce,et al.  Nonlinear Signal Processing - A Statistical Approach , 2004 .

[25]  Jordi J. Mallorquí,et al.  Estimation of azimuth phase undulations with multisquint processing in airborne interferometric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  Chana Raksiri,et al.  Geometric and force errors compensation in a 3-axis CNC milling machine , 2004 .

[27]  S. Hensley,et al.  First P-band results using the GeoSAR mapping system , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[28]  Alberto Moreira,et al.  Interferometric SAR signal analysis in the presence of squint , 2000, IEEE Trans. Geosci. Remote. Sens..

[29]  Erich Meier,et al.  Capabilities of Dual-Frequency Millimeter Wave SAR With Monopulse Processing for Ground Moving Target Indication , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  F. Rocca,et al.  SAR data focusing using seismic migration techniques , 1991 .

[31]  Helmut Essen,et al.  High resolution millimeter wave SAR interferometry , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[32]  R. Dorobantu,et al.  Investigation of a Navigation – Grade RLG SIMU type iNAV – RQH , 2004 .

[33]  Akram Aldroubi,et al.  B-spline signal processing. II. Efficiency design and applications , 1993, IEEE Trans. Signal Process..

[34]  Jaime Hueso Gonzalez,et al.  TanDEM-X: A satellite formation for high-resolution SAR interferometry , 2007 .

[35]  R. Scheiber Hochauflösende Interferometrie für Radar mit Synthetischer Apertur , 2004 .

[36]  D. Nuesch,et al.  Baseline modelling for ERS-1 SAR interferometry , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[37]  S. Blunt,et al.  Adaptive pulse compression via MMSE estimation , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[38]  Helmut Essen,et al.  High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps , 2003 .

[39]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.