Computing cylindrical algebraic decomposition via triangular decomposition

Cylindrical algebraic decomposition is one of the most important tools for computing with semi-algebraic sets, while triangular decomposition is among the most important approaches for manipulating constructible sets. In this paper, for an arbitrary finite set <i>F</i> ⊂ [<i>y<sub>1</sub></i>,...,<i>y<sub>n</sub></i>] we apply comprehensive triangular decomposition in order to obtain an <i>F</i>-invariant cylindrical decomposition of the <i>n</i>-dimensional complex space, from which we extract an <i>F</i>-invariant cylindrical algebraic decomposition of the <i>n</i>-dimensional real space. We report on an implementation of this new approach for constructing cylindrical algebraic decompositions.

[1]  Marc Moreno Maza,et al.  Computations modulo regular chains , 2009, ISSAC '09.

[2]  B. E. Eckbo,et al.  Appendix , 1826, Epilepsy Research.

[3]  George E. Collins,et al.  Interval Arithmetic in Cylindrical Algebraic Decomposition , 2002, J. Symb. Comput..

[4]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[5]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.

[6]  Andreas Seidl,et al.  Efficient projection orders for CAD , 2004, ISSAC '04.

[7]  M. M. Maza,et al.  Well known theorems on triangular systems and the D5 principle , 2006 .

[8]  Ting Zhang,et al.  Real solution isolation using interval arithmetic , 2006, Comput. Math. Appl..

[9]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[10]  James H. Davenport,et al.  The complexity of quantifier elimination and cylindrical algebraic decomposition , 2007, ISSAC '07.

[11]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition of Three-Dimensional Space , 1988, J. Symb. Comput..

[12]  V. Weispfenning A New Approach to Quantifier Elimination for Real Algebra , 1998 .

[13]  Bican Xia,et al.  An Algorithm for Isolating the Real Solutions of Semi-algebraic Systems , 2002, J. Symb. Comput..

[14]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[15]  Thomas Sturm,et al.  Real Quantifier Elimination in Practice , 1997, Algorithmic Algebra and Number Theory.

[16]  Marc Moreno Maza,et al.  The modpn library: bringing fast polynomial arithmetic into MAPLE , 2009, ACCA.

[17]  Hoon Hong,et al.  Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination , 1992, ISSAC '92.

[18]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems , 2001, SNSC.

[19]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[20]  Bican Xia,et al.  A complete algorithm for automated discovering of a class of inequality-type theorems , 2001, Science in China Series F Information Sciences.

[21]  Changbo Chen,et al.  Comprehensive Triangular Decomposition , 2007, CASC.

[22]  G. E. Collins,et al.  Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress , 1998 .

[23]  Wenjun Wu A zero structure theorem for polynomial-equations-solving and its applications , 1987, EUROCAL.

[24]  Adam W. Strzebonski,et al.  Solving Systems of Strict Polynomial Inequalities , 2000, J. Symb. Comput..

[25]  Marc Moreno Maza,et al.  Fast arithmetic for triangular sets: from theory to practice , 2007, ISSAC '07.

[26]  Scott McCallum Solving Polynomial Strict Inequalities Using Cylindrical Algebraic Decomposition , 1993, Comput. J..

[27]  H. Hong An improvement of the projection operator in cylindrical algebraic decomposition , 1990, ISSAC '90.

[28]  Christopher W. Brown Simple CAD Construction and its Applications , 2001, J. Symb. Comput..

[29]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition , 1985, European Conference on Computer Algebra.

[30]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[31]  George E. Collins,et al.  Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..

[32]  Christopher W. Brown Improved Projection for Cylindrical Algebraic Decomposition , 2001, J. Symb. Comput..

[33]  Marc Moreno Maza,et al.  Lifting techniques for triangular decompositions , 2005, ISSAC.

[34]  Xiao-Shan Gao,et al.  Complete numerical isolation of real zeros in zero-dimensional triangular systems , 2007, ISSAC '07.