Good reduction of Puiseux series and applications

We have designed a new symbolic-numeric strategy for computing efficiently and accurately floating point Puiseux series defined by a bivariate polynomial over an algebraic number field. In essence, computations modulo a well-chosen prime number p are used to obtain the exact information needed to guide floating point computations. In this paper, we detail the symbolic part of our algorithm. First of all, we study modular reduction of Puiseux series and give a good reduction criterion for ensuring that the information required by the numerical part is preserved. To establish our results, we introduce a simple modification of classical Newton polygons, that we call ''generic Newton polygons'', which turns out to be very convenient. Finally, we estimate the size of good primes obtained with deterministic and probabilistic strategies. Some of these results were announced without proof at ISSAC'08.

[1]  Joris van der Hoeven,et al.  Fast Evaluation of Holonomic Functions , 1999, Theor. Comput. Sci..

[2]  William Fulton,et al.  Hurwitz Schemes and Irreducibility of Moduli of Algebraic Curves , 1969 .

[3]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[4]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[5]  Bernard Deconinck,et al.  Computing the Abel map , 2008 .

[6]  H. T. Kung,et al.  All Algebraic Functions Can Be Computed Fast , 1978, JACM.

[7]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[8]  Bernard Deconinck,et al.  Computing Riemann matrices of algebraic curves , 2001 .

[9]  Bernard Dwork,et al.  On natural radii of $p$-adic convergence , 1979 .

[10]  Joris van der Hoeven Effective analytic functions , 2005, J. Symb. Comput..

[11]  R. A. Silverman,et al.  Theory of Functions of a Complex Variable , 1968 .

[12]  Dominique Duval,et al.  About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.

[13]  Victor Shoup A Computational Introduction to Number Theory and Algebra: Bibliography , 2005 .

[14]  Rick Miranda,et al.  Algebraic Curves and Riemann Surfaces , 1995 .

[15]  P. G. Walsh,et al.  ON THE COMPLEXITY OF RATIONAL PUISEUX EXPANSIONS , 1999 .

[16]  J. Stillwell,et al.  Plane Algebraic Curves , 1986 .

[17]  Adrien Poteaux,et al.  Good reduction of puiseux series and complexity of the Newton-Puiseux algorithm over finite fields , 2008, ISSAC '08.

[18]  Adrien Poteaux,et al.  Complexity bounds for the rational Newton-Puiseux algorithm over finite fields , 2011, Applicable Algebra in Engineering, Communication and Computing.

[19]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[20]  Éric Schost,et al.  Differential equations for algebraic functions , 2007, ISSAC '07.

[21]  Dominique Duval,et al.  Absolute Factorization of Polynomials: A Geometric Approach , 1991, SIAM J. Comput..

[22]  A. Robert,et al.  A Course in p-adic Analysis , 2000 .

[23]  W. Burnside Theory of Functions of a Complex Variable , 1893, Nature.

[24]  Mark J. Encarnación Computing GCDs of Polynomials over Algebraic Number Fields , 1995, J. Symb. Comput..

[25]  James H. Davenport,et al.  On the Integration of Algebraic Functions , 1979, Lecture Notes in Computer Science.

[26]  J. W. Bruce,et al.  LE PROBLÈME DES MODULES POUR LES BRANCHES PLANES , 1988 .

[27]  P. M. Cohn,et al.  Puiseux's theorem revisited , 1984 .

[28]  P. G. Walsh,et al.  A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function , 2000, Math. Comput..

[29]  Martin Eichler,et al.  Introduction to the Theory of Algebraic Numbers and Functions , 1966 .

[30]  H. Hilton Plane algebraic curves , 1921 .

[31]  Adrien Poteaux,et al.  Computing monodromy groups defined by plane algebraic curves , 2007, SNC '07.

[32]  D. V. Chudnovsky,et al.  On expansion of algebraic functions in power and Puiseux series, I , 1986, J. Complex..

[33]  Antonio Campillo,et al.  Algebroid Curves in Positive Characteristic , 1980 .

[34]  Manuel Bronstein,et al.  Integration of Elementary Functions , 1990, J. Symb. Comput..

[35]  Tateaki Sasaki,et al.  Hensel construction of F(x, u1, ..., xl) l ≥ 2 at a singular point and its applications , 2000, SIGS.

[36]  Mark van Hoeij,et al.  Rational Parametrizations of Algebraic Curves Using a Canonical Divisor , 1997, J. Symb. Comput..

[37]  C. Hoffmann Algebraic curves , 1988 .

[38]  Peter J. Weinberger,et al.  Factoring Polynomials Over Algebraic Number Fields , 1976, TOMS.

[39]  Narain Gupta,et al.  On the dimension subgroups of metabelian groups , 1982 .

[40]  Victor Shoup,et al.  A computational introduction to number theory and algebra , 2005 .

[41]  Otto Forster,et al.  Lectures on Riemann Surfaces , 1999 .

[42]  Pawe l Wocjan Absolute Factorization of Polynomials , 1999 .

[43]  H. Piaggio Algebraic Functions , 1952, Nature.

[44]  Mark van Hoeij,et al.  An Algorithm for Computing an Integral Basis in an Algebraic Function Field , 1994, J. Symb. Comput..

[45]  Adrien Poteaux Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane , 2008 .

[46]  J. P. G. Henry,et al.  Complexity of computation of embedded resolution of algebraic curves , 1987, EUROCAL.

[47]  D. Duval Rational Puiseux expansions , 1989 .

[48]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[49]  C. Chevalley,et al.  Introduction to the theory of algebraic functions of one variable , 1951 .