On Groves mechanisms for costly inclusion

We investigate Groves mechanisms for economies where (i) a social outcome specifies a group of winning agents, and (ii) a cost function associates each group with a monetary cost. In particular, we characterize both (i) the class of cost functions for which there are Groves mechanisms such that the agents cover the costs through voluntary payments, and (ii) the class of cost functions for which there are envy-free Groves mechanisms. It follows directly from our results that whenever production efficient and envy-free allocations can be implemented in dominant strategies, this can moreover be done while funding production through voluntary payments.

[1]  Vito Fragnelli,et al.  Handbook of the Shapley Value , 2019 .

[2]  Renato Paes Leme,et al.  Gross substitutability: An algorithmic survey , 2017, Games Econ. Behav..

[3]  Kazuhiko Hashimoto,et al.  Strategy-proof rules for an excludable public good , 2016, Soc. Choice Welf..

[4]  Ruben Juarez,et al.  Group strategyproof cost sharing: The role of indifferences , 2013, Games Econ. Behav..

[5]  Duygu Yengin Characterizing Welfare-egalitarian Mechanisms with Solidarity When Valuations are Private Information , 2012 .

[6]  Shinji Ohseto,et al.  a-Serial Mechanisms for the Provision of an Excludable Public Good , 2010 .

[7]  Toyotaka Sakai,et al.  Second price auctions on general preference domains: two characterizations , 2008 .

[8]  Shigehiro Serizawa,et al.  Vickrey allocation rule with income effect , 2008, SSRN Electronic Journal.

[9]  Yan Yu,et al.  Serial cost sharing of an excludable public good available in multiple units , 2007, Soc. Choice Welf..

[10]  Shinji Ohseto Characterizations of strategy-proof and fair mechanisms for allocating indivisible goods , 2006 .

[11]  Suresh Mutuswami,et al.  Strategyproof cost sharing of a binary good and the egalitarian solution , 2004, Math. Soc. Sci..

[12]  Szilvia Pápai,et al.  Groves sealed bid auctions of heterogeneous objects with fair prices , 2003, Soc. Choice Welf..

[13]  Joan Feigenbaum,et al.  Distributed algorithmic mechanism design: recent results and future directions , 2002, DIALM '02.

[14]  H. Moulin,et al.  Strategyproof sharing of submodular costs:budget balance versus efficiency , 2001 .

[15]  Shinji Ohseto,et al.  Characterizations of Strategy-Proof Mechanisms for Excludable versus Nonexcludable Public Projects , 2000, Games Econ. Behav..

[16]  R. Deb,et al.  AUCTION-LIKE MECHANISMS FOR PRICING EXCLUDABLE PUBLIC GOODS , 1999 .

[17]  Faruk Gul,et al.  WALRASIAN EQUILIBRIUM WITH GROSS SUBSTITUTES , 1999 .

[18]  Rajat Deb,et al.  Voluntary cost sharing for an excludable public project , 1999 .

[19]  H. Moulin Incremental cost sharing: Characterization by coalition strategy-proofness , 1999 .

[20]  H. Peyton Young,et al.  Cost allocation, demand revelation, and core implementation , 1998 .

[21]  Deborah Estrin,et al.  Sharing the “cost” of multicast trees: an axiomatic analysis , 1995, SIGCOMM '95.

[22]  H. Young Cost allocation : methods, principles, applications , 1985 .

[23]  H. Leonard Elicitation of Honest Preferences for the Assignment of Individuals to Positions , 1983, Journal of Political Economy.

[24]  V. Crawford,et al.  Job Matching, Coalition Formation, and Gross Substitutes , 1982 .

[25]  H. Young,et al.  Cost allocation in water resources development , 1982 .

[26]  P. Straffin,et al.  Game theory and the tennessee valley authority , 1981 .

[27]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[28]  Bengt Holmstrom,et al.  GROVES' SCHEME ON RESTRICTED DOMAINS , 1979 .

[29]  G. Owen,et al.  A Simple Expression for the Shapley Value in a Special Case , 1973 .

[30]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[31]  Theodore Groves,et al.  Incentives in Teams , 1973 .

[32]  L. Shapley,et al.  The assignment game I: The core , 1971 .

[33]  L. Shapley Cores of convex games , 1971 .

[34]  E. H. Clarke Multipart pricing of public goods , 1971 .

[35]  M. Shubik Incentives, Decentralized Control, the Assignment of Joint Costs and Internal Pricing , 1962 .

[36]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[37]  Steven Vajda,et al.  The Theory of Linear Economic Models , 1960 .

[38]  A. S. Manne Multiple-Purpose Public Enterprises-Criteria for Pricing , 1952 .

[39]  F. Ramsey A Contribution to the Theory of Taxation , 1927 .

[40]  S. J. R. de Monchy,et al.  E. von Böhm-Bawerk. Kapital und Kapitalzins., Zweite Abteilung: Positive Theorie des Kapitales , 1913 .

[41]  Andrew Mackenzie,et al.  On Groves mechanisms for costly inclusion , 2022, SSRN Electronic Journal.

[42]  Duygu Yengin,et al.  No-envy and egalitarian-equivalence under multi-object-demand for heterogeneous objects , 2017, Soc. Choice Welf..

[43]  Antonio Nicolò,et al.  On cost sharing in the provision of a binary and excludable public good , 2015, J. Econ. Theory.

[44]  Joan Feigenbaum,et al.  Sharing the Cost of Multicast Transmissions , 2001, J. Comput. Syst. Sci..

[45]  William Sharkey,et al.  Network Models in Economics , 1991 .

[46]  E. H. Clarke Incentives in public decision-making , 1980 .

[47]  William J. Baumol,et al.  On the Proper Cost Tests for Natural Monopoly in a Multiproduct Industry , 1977 .

[48]  C. G. Bird,et al.  On cost allocation for a spanning tree: A game theoretic approach , 1976, Networks.

[49]  Daniel J. Kleitman,et al.  Cost allocation for a spanning tree , 1973, Networks.

[50]  David L. Bradford,et al.  Optimal Departures from Marginal Cost Pricing , 1970 .

[51]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[52]  Marcel Boiteux,et al.  Sur la gestion des Monopoles Publics astreints a l'equilibre budgetaire , 1956 .