Geometry of Complete Gradient Shrinking Ricci Solitons

We survey some of the recent progress on complete gradient shrinking Ricci solitons, including the classifications in dimension three and asymptotic behavior of potential functions as well as volume growths of geodesic balls in higher dimensions. This article is written for the conference proceedings dedicated to Yau's 60th birthday.

[1]  H. Cao,et al.  Recent developments on the Hamilton’s Ricci Flow , 2007 .

[2]  A. Derdzinski A Myers-type theorem and compact Ricci solitons , 2004, math/0403052.

[3]  W. Wylie Complete Shrinking Ricci Solitons have Finite Fundamental Group , 2007, 0704.0317.

[4]  Detang Zhou,et al.  On complete gradient shrinking Ricci solitons , 2009, 0903.3932.

[5]  Frank Morgan,et al.  Manifolds with Density , 2005 .

[6]  Guofang Wei,et al.  Comparison geometry for the Bakry-Emery Ricci tensor , 2007, 0706.1120.

[7]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[8]  Zhuhong Zhang On the completeness of gradient Ricci solitons , 2008, 0807.1581.

[9]  F. Fang,et al.  Complete gradient shrinking Ricci solitons have finite topological type , 2007, 0801.0103.

[10]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[11]  T. Ivey Ricci solitons on compact three-manifolds , 1993 .

[12]  Lei Ni,et al.  Sharp logarithmic Sobolev inequalities on gradient solitons and applications , 2008, 0806.2417.

[13]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[14]  N. Koiso On Rotationally Symmetric Hamilton’s Equation for Kähler–Einstein Metrics , 1990 .

[15]  E. García‐Río,et al.  A remark on compact Ricci solitons , 2008 .

[16]  Zhu-Hong Zhang,et al.  GRADIENT SHRINKING SOLITONS WITH VANISHING WEYL TENSOR , 2008, 0807.1582.

[17]  R. Hamilton Four-manifolds with positive curvature operator , 1986 .

[18]  William Wylie,et al.  On the classification of gradient Ricci solitons , 2007, 0712.1298.

[19]  Ricci solitons: the equation point of view , 2006, math/0607546.

[20]  H. Cao SINGULARITIES OF THE RICCI FLOW ON 3-MANIFOLDS , 2009 .

[21]  M. Feldman,et al.  Rotationally symmetric shrinking and ex - panding gradient Kahler - Ricci solitons , 2003 .

[22]  N. Wallach,et al.  On a classification of the gradient shrinking solitons , 2007, 0710.3194.

[23]  H. Cao Recent Progress on Ricci Solitons , 2009, 0908.2006.

[24]  Xiaodong Cao,et al.  On Locally Conformally Flat Gradient Shrinking Ricci Solitons , 2008, 0807.0588.

[25]  Huai-Dong Cao,et al.  A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow , 2006 .

[26]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[27]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[28]  Xu-jia Wang,et al.  Kahler-Ricci solitons on toric manifolds with positive first Chern class , 2004 .

[29]  Mckenzie Y. Wang,et al.  On Ricci solitons of cohomogeneity one , 2008, 0802.0759.

[30]  Xue-Mei Li On Extensions of Myers' Theorem , 1995, 1911.07325.

[31]  Wolfgang Meyer,et al.  On Complete Open Manifolds of Positive Curvature , 1969 .

[32]  P. Lu,et al.  A note on uniformization of riemann surfaces by ricci flow , 2005, math/0505163.

[33]  H. Cao Geometry of Ricci Solitons* , 2006 .

[34]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .

[35]  A. Naber Noncompact Shrinking 4-Solitons with Nonnegative Curvature , 2007, 0710.5579.

[36]  B. Chow,et al.  The Ricci Flow : An Introduction I , 2013 .

[37]  Bing-Long Chen,et al.  Strong Uniqueness of the Ricci Flow , 2007, 0706.3081.

[38]  Manifolds with positive curvature operators are space forms , 2006, math/0606187.