Geometry of Complete Gradient Shrinking Ricci Solitons
暂无分享,去创建一个
[1] H. Cao,et al. Recent developments on the Hamilton’s Ricci Flow , 2007 .
[2] A. Derdzinski. A Myers-type theorem and compact Ricci solitons , 2004, math/0403052.
[3] W. Wylie. Complete Shrinking Ricci Solitons have Finite Fundamental Group , 2007, 0704.0317.
[4] Detang Zhou,et al. On complete gradient shrinking Ricci solitons , 2009, 0903.3932.
[5] Frank Morgan,et al. Manifolds with Density , 2005 .
[6] Guofang Wei,et al. Comparison geometry for the Bakry-Emery Ricci tensor , 2007, 0706.1120.
[7] G. Perelman. Ricci flow with surgery on three-manifolds , 2003, math/0303109.
[8] Zhuhong Zhang. On the completeness of gradient Ricci solitons , 2008, 0807.1581.
[9] F. Fang,et al. Complete gradient shrinking Ricci solitons have finite topological type , 2007, 0801.0103.
[10] S. Yau,et al. Lectures on Differential Geometry , 1994 .
[11] T. Ivey. Ricci solitons on compact three-manifolds , 1993 .
[12] Lei Ni,et al. Sharp logarithmic Sobolev inequalities on gradient solitons and applications , 2008, 0806.2417.
[13] B. Chow,et al. The Ricci flow on surfaces , 2004 .
[14] N. Koiso. On Rotationally Symmetric Hamilton’s Equation for Kähler–Einstein Metrics , 1990 .
[15] E. García‐Río,et al. A remark on compact Ricci solitons , 2008 .
[16] Zhu-Hong Zhang,et al. GRADIENT SHRINKING SOLITONS WITH VANISHING WEYL TENSOR , 2008, 0807.1582.
[17] R. Hamilton. Four-manifolds with positive curvature operator , 1986 .
[18] William Wylie,et al. On the classification of gradient Ricci solitons , 2007, 0712.1298.
[19] Ricci solitons: the equation point of view , 2006, math/0607546.
[20] H. Cao. SINGULARITIES OF THE RICCI FLOW ON 3-MANIFOLDS , 2009 .
[21] M. Feldman,et al. Rotationally symmetric shrinking and ex - panding gradient Kahler - Ricci solitons , 2003 .
[22] N. Wallach,et al. On a classification of the gradient shrinking solitons , 2007, 0710.3194.
[23] H. Cao. Recent Progress on Ricci Solitons , 2009, 0908.2006.
[24] Xiaodong Cao,et al. On Locally Conformally Flat Gradient Shrinking Ricci Solitons , 2008, 0807.0588.
[25] Huai-Dong Cao,et al. A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow , 2006 .
[26] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.
[27] R. Hamilton. Three-manifolds with positive Ricci curvature , 1982 .
[28] Xu-jia Wang,et al. Kahler-Ricci solitons on toric manifolds with positive first Chern class , 2004 .
[29] Mckenzie Y. Wang,et al. On Ricci solitons of cohomogeneity one , 2008, 0802.0759.
[30] Xue-Mei Li. On Extensions of Myers' Theorem , 1995, 1911.07325.
[31] Wolfgang Meyer,et al. On Complete Open Manifolds of Positive Curvature , 1969 .
[32] P. Lu,et al. A note on uniformization of riemann surfaces by ricci flow , 2005, math/0505163.
[33] H. Cao. Geometry of Ricci Solitons* , 2006 .
[34] Richard S. Hamilton,et al. The Ricci flow on surfaces , 1986 .
[35] A. Naber. Noncompact Shrinking 4-Solitons with Nonnegative Curvature , 2007, 0710.5579.
[36] B. Chow,et al. The Ricci Flow : An Introduction I , 2013 .
[37] Bing-Long Chen,et al. Strong Uniqueness of the Ricci Flow , 2007, 0706.3081.
[38] Manifolds with positive curvature operators are space forms , 2006, math/0606187.