Adjoint A Posteriori Error Measures for Anisotropic Mesh Optimisation
暂无分享,去创建一个
Christopher C. Pain | Fangxin Fang | Ionel Michael Navon | Matthew D. Piggott | Gerard Gorman | Anthony J. H. Goddard | P. W. Power | A. P. Umpleby | M. Piggott | Ionel M. Navon | A. Umpleby | C. Pain | F. Fang | G. Gorman | A. Goddard
[1] Paul-Louis George,et al. Delaunay triangulation and meshing : application to finite elements , 1998 .
[2] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[3] Peter Hansbo,et al. On advancing front mesh generation in three dimensions , 1995 .
[4] B. P. Leonard,et al. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .
[5] C. C. Pain,et al. An automatic adaptive meshing technique for Delaunay triangulations , 1998 .
[6] J. Derber,et al. Variational Data Assimilation with an Adiabatic Version of the NMC Spectral Model , 1992 .
[7] J. Oden,et al. Goal-oriented error estimation and adaptivity for the finite element method , 2001 .
[8] C.R.E. de Oliveira,et al. Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .
[9] Ionel M. Navon,et al. Second-Order Information in Data Assimilation* , 2002 .
[10] C.R.E. de Oliveira,et al. Three-dimensional unstructured mesh ocean modelling , 2005 .
[11] M. Piggott,et al. An adaptive mesh adjoint data assimilation method , 2006 .
[12] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[13] Ionel M. Navon,et al. Use of differentiable and nondifferentiable optimization algorithms for variational data assimilation with discontinuous cost functions , 2000 .
[14] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[15] Raymond Hide,et al. Superhelicity, helicity and potential vorticity , 1989 .
[16] Michael B. Giles,et al. Solution Adaptive Mesh Refinement Using Adjoint Error Analysis , 2001 .
[17] P. George,et al. Automatic mesh generator with specified boundary , 1991 .
[18] Ionel Michael Navon,et al. A posteriori pointwise error estimation for compressible fluid flows using adjoint parameters and Lagrange remainder , 2005 .
[19] B. Joe. Three-dimensional triangulations from local transformations , 1989 .
[20] O. C. Zienkiewicz,et al. Adaptive remeshing for compressible flow computations , 1987 .
[21] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[22] Ekkehard Ramm,et al. A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .
[23] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[24] O. C. Zienkiewicz,et al. An adaptive finite element procedure for compressible high speed flows , 1985 .
[25] Ronald M. Errico,et al. Evaluation of physical processes in an idealized extratropical cyclone using adjoint sensitivity , 1995 .
[26] Y. Kallinderis,et al. Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes , 1993 .
[27] H. Borouchaki,et al. Fast Delaunay triangulation in three dimensions , 1995 .
[28] Nikolaos D. Katopodes,et al. Control of Canal Flow by Adjoint Sensitivity Method , 1999 .
[29] B. Sanders,et al. Adjoint Sensitivity Analysis for Shallow-Water Wave Control , 2000 .
[30] Thomas J. R. Hughes,et al. A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .
[31] I. Michael Navon,et al. The analysis of an ill-posed problem using multi-scale resolution and second-order adjoint techniques , 2001 .
[32] D. Venditti,et al. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .
[33] Carl Ollivier-Gooch,et al. Tetrahedral mesh improvement using swapping and smoothing , 1997 .
[34] J. T. Oden,et al. A posteriori error estimation of finite element approximations in fluid mechanics , 1990 .
[35] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[36] A. Jameson,et al. A COMPARISON OF THE CONTINUOUS AND DISCRETE ADJOINT APPROACH TO AUTOMATIC AERODYNAMIC OPTIMIZATION , 2000 .
[37] N. Weatherill,et al. Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .
[38] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[39] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[41] Raymond Hide,et al. A note on helicity , 1975 .
[42] Rolf Rannacher,et al. A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity , 1998 .
[43] D. Venditti,et al. Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .
[44] Michael Piasecki,et al. Control of Contaminant Releases in Rivers. I: Adjoint Sensitivity Analysis , 1997 .
[45] H. Borouchaki,et al. Adaptive triangular–quadrilateral mesh generation , 1998 .
[46] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[47] Gustavo C. Buscaglia,et al. Anisotropic mesh optimization and its application in adaptivity , 1997 .
[48] D. Cacuci. Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach , 1981 .
[49] O. C. Zienkiewicz,et al. Error estimation and adaptivity in Navier-Stokes incompressible flows , 1990 .
[50] Ionel Michael Navon,et al. Numerical and theoretical considerations for sensitivity calculation of discontinuous flow , 2003, Syst. Control. Lett..
[51] Max Gunzburger,et al. SENSITIVITIES, ADJOINTS AND FLOW OPTIMIZATION , 1999 .
[52] C. C. Pain,et al. h, r, and hr adaptivity with applications in numerical ocean modelling , 2005 .
[53] P. George,et al. OPTIMAL DELAUNAY POINT INSERTION , 1996 .
[54] Anthony T. Patera,et al. A hierarchical duality approach to bounds for the outputs of partial differential equations , 1998 .
[55] D. Venditti,et al. Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .
[56] P. Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .
[57] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[58] Paresh Parikh,et al. Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .
[59] J. Tinsley Oden,et al. Advances in adaptive computational methods in mechanics , 1998 .
[60] Andreas Griewank,et al. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation , 1992 .
[61] Michael B. Giles,et al. Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..
[62] Raymond Hide,et al. Helicity, superhelicity and weighted relative potential vorticity: Useful diagnostic pseudoscalars? , 2002 .