Adjoint A Posteriori Error Measures for Anisotropic Mesh Optimisation

In this paper an adjoint- (or sensitivity-) based error measure is formulated which measures the error contribution of each solution variable to an overall goal The goal is typically embodied in an integral functional, e.g., the solution in a small region of the domain of interest. The resulting a posteriori error measures involve the solution of both primal and adjoint problems. A comparison of a number of important a posteriori error measures is made in this work. There is a focus on developing relatively simple methods that refer to information from the discretised equation sets (often readily accessible in simulation codes) and do not explicitly use equation residuals. This method is subsequently used to guide anisotropic mesh adaptivity of tetrahedral finite elements. Mesh adaptivity is achieved here with a series of optimisation heuristics of the landscape defined by mesh quality. Mesh quality is gauged with respect to a Riemann metric tensor embodying an a posteriori error measure, such that an ideal element has sides of unit length when measured with respect to this metric tensor. This results in meshes in which each finite-element node has approximately equal (subject to certain boundary-conforming constraints and the performance of the mesh optimisation heuristics) error contribution to the functional (goal).

[1]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[3]  Peter Hansbo,et al.  On advancing front mesh generation in three dimensions , 1995 .

[4]  B. P. Leonard,et al.  The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .

[5]  C. C. Pain,et al.  An automatic adaptive meshing technique for Delaunay triangulations , 1998 .

[6]  J. Derber,et al.  Variational Data Assimilation with an Adiabatic Version of the NMC Spectral Model , 1992 .

[7]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[8]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[9]  Ionel M. Navon,et al.  Second-Order Information in Data Assimilation* , 2002 .

[10]  C.R.E. de Oliveira,et al.  Three-dimensional unstructured mesh ocean modelling , 2005 .

[11]  M. Piggott,et al.  An adaptive mesh adjoint data assimilation method , 2006 .

[12]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[13]  Ionel M. Navon,et al.  Use of differentiable and nondifferentiable optimization algorithms for variational data assimilation with discontinuous cost functions , 2000 .

[14]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[15]  Raymond Hide,et al.  Superhelicity, helicity and potential vorticity , 1989 .

[16]  Michael B. Giles,et al.  Solution Adaptive Mesh Refinement Using Adjoint Error Analysis , 2001 .

[17]  P. George,et al.  Automatic mesh generator with specified boundary , 1991 .

[18]  Ionel Michael Navon,et al.  A posteriori pointwise error estimation for compressible fluid flows using adjoint parameters and Lagrange remainder , 2005 .

[19]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[20]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[21]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[22]  Ekkehard Ramm,et al.  A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .

[23]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[24]  O. C. Zienkiewicz,et al.  An adaptive finite element procedure for compressible high speed flows , 1985 .

[25]  Ronald M. Errico,et al.  Evaluation of physical processes in an idealized extratropical cyclone using adjoint sensitivity , 1995 .

[26]  Y. Kallinderis,et al.  Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes , 1993 .

[27]  H. Borouchaki,et al.  Fast Delaunay triangulation in three dimensions , 1995 .

[28]  Nikolaos D. Katopodes,et al.  Control of Canal Flow by Adjoint Sensitivity Method , 1999 .

[29]  B. Sanders,et al.  Adjoint Sensitivity Analysis for Shallow-Water Wave Control , 2000 .

[30]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[31]  I. Michael Navon,et al.  The analysis of an ill-posed problem using multi-scale resolution and second-order adjoint techniques , 2001 .

[32]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[33]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[34]  J. T. Oden,et al.  A posteriori error estimation of finite element approximations in fluid mechanics , 1990 .

[35]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[36]  A. Jameson,et al.  A COMPARISON OF THE CONTINUOUS AND DISCRETE ADJOINT APPROACH TO AUTOMATIC AERODYNAMIC OPTIMIZATION , 2000 .

[37]  N. Weatherill,et al.  Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .

[38]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[39]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[41]  Raymond Hide,et al.  A note on helicity , 1975 .

[42]  Rolf Rannacher,et al.  A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity , 1998 .

[43]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[44]  Michael Piasecki,et al.  Control of Contaminant Releases in Rivers. I: Adjoint Sensitivity Analysis , 1997 .

[45]  H. Borouchaki,et al.  Adaptive triangular–quadrilateral mesh generation , 1998 .

[46]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[47]  Gustavo C. Buscaglia,et al.  Anisotropic mesh optimization and its application in adaptivity , 1997 .

[48]  D. Cacuci Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach , 1981 .

[49]  O. C. Zienkiewicz,et al.  Error estimation and adaptivity in Navier-Stokes incompressible flows , 1990 .

[50]  Ionel Michael Navon,et al.  Numerical and theoretical considerations for sensitivity calculation of discontinuous flow , 2003, Syst. Control. Lett..

[51]  Max Gunzburger,et al.  SENSITIVITIES, ADJOINTS AND FLOW OPTIMIZATION , 1999 .

[52]  C. C. Pain,et al.  h, r, and hr adaptivity with applications in numerical ocean modelling , 2005 .

[53]  P. George,et al.  OPTIMAL DELAUNAY POINT INSERTION , 1996 .

[54]  Anthony T. Patera,et al.  A hierarchical duality approach to bounds for the outputs of partial differential equations , 1998 .

[55]  D. Venditti,et al.  Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .

[56]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[57]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[58]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[59]  J. Tinsley Oden,et al.  Advances in adaptive computational methods in mechanics , 1998 .

[60]  Andreas Griewank,et al.  Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation , 1992 .

[61]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[62]  Raymond Hide,et al.  Helicity, superhelicity and weighted relative potential vorticity: Useful diagnostic pseudoscalars? , 2002 .