Tailoring microcombs with inverse-designed, meta-dispersion microresonators

[1]  A. Matsko,et al.  Engineered zero-dispersion microcombs using CMOS-ready photonics , 2023, Optica.

[2]  G. Kang,et al.  Inverse design of soliton microcomb based on genetic algorithm and deep learning. , 2022, Optics Express.

[3]  K. Srinivasan,et al.  Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs , 2022, Communications Physics.

[4]  J. Vučković,et al.  Photonic Inverse Design of On-Chip Microresonators , 2022, ACS Photonics.

[5]  J. Bowers,et al.  Probing material absorption and optical nonlinearity of integrated photonic materials , 2021, Nature Communications.

[6]  J. Zang,et al.  A continuum of bright and dark-pulse states in a photonic-crystal resonator , 2021, Nature Communications.

[7]  Scott B. Papp,et al.  Inverse spectral design of Kerr microcomb pulses , 2021, LASE.

[8]  P. Andrekson,et al.  Dissipative solitons in photonic molecules , 2021, Nature Photonics.

[9]  K. Vahala,et al.  Dirac solitons in optical microresonators , 2020, 2021 Conference on Lasers and Electro-Optics (CLEO).

[10]  Sergei K. Turitsyn,et al.  Machine learning and applications in ultrafast photonics , 2020, Nature Photonics.

[11]  K. Srinivasan,et al.  A universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances. , 2020, Photonics research.

[12]  T. Kippenberg,et al.  Zero dispersion Kerr solitons in optical microresonators , 2020, Nature Communications.

[13]  T. C. Briles,et al.  Tantala Kerr nonlinear integrated photonics , 2020, 2007.12958.

[14]  T. Kippenberg,et al.  Emergent nonlinear phenomena in a driven dissipative photonic dimer , 2020, Nature Physics.

[15]  D. Skryabin Hierarchy of coupled mode and envelope models for bi-directional microresonators with Kerr nonlinearity , 2020, 2005.00677.

[16]  K. Srinivasan,et al.  Spontaneous pulse formation in edgeless photonic crystal resonators , 2020, Nature Photonics.

[17]  Erwan Lucas,et al.  Massively parallel coherent laser ranging using a soliton microcomb , 2019, Nature.

[18]  K. Srinivasan,et al.  Terahertz-Rate Kerr-Microresonator Optical Clockwork , 2018, Physical Review X.

[19]  Roberto Morandotti,et al.  Customizing supercontinuum generation via on-chip adaptive temporal pulse-splitting , 2018, Nature Communications.

[20]  Haoran Cui,et al.  Genetically optimized on-chip wideband ultracompact reflectors and Fabry-Pérot cavities , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[21]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[22]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[23]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[24]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[25]  Qing Li,et al.  Stably accessing octave-spanning microresonator frequency combs in the soliton regime. , 2016, Optica.

[26]  M. Karpov,et al.  Breathing dissipative solitons in optical microresonators , 2016, Nature Communications.

[27]  T. Kippenberg,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[28]  K. Vahala,et al.  Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. , 2016, Optics letters.

[29]  Maxim Karpov,et al.  Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[30]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[31]  M. Gorodetsky,et al.  Frequency combs and platicons in optical microresonators with normal GVD. , 2015, Optics express.

[32]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[33]  M. Gorodetsky,et al.  Mode spectrum and temporal soliton formation in optical microresonators. , 2013, Physical review letters.

[34]  Yanne K. Chembo,et al.  Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes , 2013, 1308.2542.

[35]  S. Wabnitz,et al.  On the numerical simulation of Kerr frequency combs using coupled mode equations , 2013, 1307.3428.

[36]  Miro Erkintalo,et al.  Universal scaling laws of Kerr frequency combs. , 2013, Optics letters.

[37]  K. Vahala,et al.  Sideband spectroscopy and dispersion measurement in microcavities. , 2012, Optics express.

[38]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[39]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[40]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[41]  M. Gorodetsky,et al.  Universal dynamics of Kerr-frequency comb formation in microresonators , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[42]  Ole Sigmund,et al.  On the usefulness of non-gradient approaches in topology optimization , 2011 .

[43]  Manoj Kumar,et al.  Genetic Algorithm: Review and Application , 2010 .

[44]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[45]  O. Sigmund,et al.  Topology optimization for nano‐photonics , 2011 .

[46]  Tanya M Monro,et al.  A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation. , 2009, Optics express.

[47]  P Bassi,et al.  Closure of the stop-band in photonic wire Bragg gratings. , 2009, Optics express.

[48]  D. Lorenc,et al.  Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber , 2007 .

[49]  Shanhui Fan,et al.  Sharp asymmetric line shapes in side-coupled waveguide-cavity systems , 2002 .

[50]  Vladimir S. Ilchenko,et al.  Rayleigh scattering in high-Q microspheres , 2000 .

[51]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[52]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[53]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[54]  K. Srinivasan,et al.  Arbitrary Microring Dispersion Engineering for Ultrabroad Frequency Combs: Photonic Crystal Microring Design Based on Fourier Synthesis , 2022 .

[55]  A. Gautam,et al.  STATE , 2016, Intell. Serv. Robotics.

[56]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .