On-chip nanophotonics and future challenges

Abstract On-chip nanophotonic devices are a class of devices capable of controlling light on a chip to realize performance advantages over ordinary building blocks of integrated photonics. These ultra-fast and low-power nanoscale optoelectronic devices are aimed at high-performance computing, chemical, and biological sensing technologies, energy-efficient lighting, environmental monitoring and more. They are increasingly becoming an attractive building block in a variety of systems, which is attributed to their unique features of large evanescent field, compactness, and most importantly their ability to be configured according to the required application. This review summarizes recent advances of integrated nanophotonic devices and their demonstrated applications, including but not limited to, mid-infrared and overtone spectroscopy, all-optical processing on a chip, logic gates on a chip, and cryptography on a chip. The reviewed devices open up a new chapter in on-chip nanophotonics and enable the application of optical waveguides in a variety of optical systems, thus are aimed at accelerating the transition of nanophotonics from academia to the industry.

[1]  A. Karabchevsky,et al.  Deflected Talbot mediated overtone spectroscopy in near-infrared as a label-free sensor on a chip. , 2020, ACS sensors.

[2]  M. Elkabets,et al.  Surface roughness-induced absorption acts as an ovarian cancer cells growth sensor-monitor. , 2020, Biosensors & bioelectronics.

[3]  N. Engheta,et al.  Antireflection temporal coatings , 2020 .

[4]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[5]  A. Karabchevsky,et al.  Differential extinction of vibrational molecular overtone transitions with gold nanorods and its role in surface enhanced near-IR absorption (SENIRA). , 2019, Optics express.

[6]  Michael J. Steel,et al.  Brillouin integrated photonics , 2019, Nature Photonics.

[7]  A. Helmy,et al.  Record Purcell factors in ultracompact hybrid plasmonic ring resonators , 2019, Science Advances.

[8]  Mk Meint Smit,et al.  Past, present, and future of InP-based photonic integration , 2019, APL Photonics.

[9]  Gerald S Buller,et al.  High performance planar germanium-on-silicon single-photon avalanche diode detectors , 2019, Nature Communications.

[10]  R. G. Krämer,et al.  Femtosecond written fiber Bragg gratings in ytterbium-doped fibers for fiber lasers in the kilowatt regime. , 2019, Optics letters.

[11]  Xiaodong Yang,et al.  Scaling law of Purcell factor in hyperbolic metamaterial cavities with dipole excitation. , 2019, Optics letters.

[12]  A. Majumdar,et al.  Van der Waals materials integrated nanophotonic devices [Invited] , 2019, Optical Materials Express.

[13]  C. Simovski,et al.  Purcell factor and local intensity enhancement in surface-enhanced Raman scattering , 2019, Nanophotonics.

[14]  A. Szameit,et al.  Demonstration of a two-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal P}{\cal T}$$\end{document}PT- , 2019, Nature Communications.

[15]  A. Szameit,et al.  Demonstration of a two-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal P}{\cal T}$$\end{document}PT- , 2019, Nature Communications.

[16]  Xiaofei Xiao,et al.  A perspective on topological nanophotonics: Current status and future challenges , 2018, Journal of Applied Physics.

[17]  Qing Li,et al.  Chip-integrated visible–telecom entangled photon pair source for quantum communication , 2018, Nature Physics.

[18]  Antonio D’Errico,et al.  Graphene-based integrated photonics for next-generation datacom and telecom , 2018, Nature Reviews Materials.

[19]  Ivana Gasulla,et al.  Programmable multifunctional integrated nanophotonics , 2018, Nanophotonics.

[20]  Alina Karabchevsky,et al.  Tuning the Near-Infrared Absorption of Aromatic Amines on Tapered Fibers Sculptured with Gold Nanoparticles , 2018 .

[21]  M. Eich,et al.  Reciprocity approach for calculating the Purcell effect for emission into an open optical system. , 2018, Optics express.

[22]  A. Karabchevsky,et al.  Si Nanostrip Optical Waveguide for On-Chip Broadband Molecular Overtone Spectroscopy in Near-Infrared. , 2018, ACS sensors.

[23]  D. Thomson,et al.  Hybrid Photon-Plasmon Coupling and Ultrafast Control of Nanoantennas on a Silicon Photonic Chip. , 2018, Nano letters.

[24]  A. Karabchevsky,et al.  Invisibility Cloaking Scheme by Evanescent Fields Distortion on Composite Plasmonic Waveguides with Si Nano-Spacer , 2017, Scientific Reports.

[25]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[26]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[27]  Hiroshi Fukuda,et al.  Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator , 2017, Nature Photonics.

[28]  A. Karabchevsky,et al.  Figure of Merit of All-Dielectric Waveguide Structures for Absorption Overtone Spectroscopy , 2017, Journal of Lightwave Technology.

[29]  Anthony L Lentine,et al.  Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode. , 2017, Optics express.

[30]  A. R. Gubaidullin,et al.  Analysis of the Purcell effect in the waveguide mode by S-quantization , 2017 .

[31]  Yuang Wang,et al.  Lasing and anti-lasing in a single cavity , 2016, Nature Photonics.

[32]  Steven G. Johnson,et al.  General theory of spontaneous emission near exceptional points. , 2016, Optics express.

[33]  James C. Gates,et al.  Chip-based array of near-identical, pure, heralded single-photon sources , 2016, 1603.06984.

[34]  M. K. Shah,et al.  High-Speed Optical Phase Modulator Based on Graphene-Silicon Waveguide , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  I. Sagnes,et al.  Active demultiplexing of single photons from a solid‐state source , 2016, 1611.02294.

[36]  Yadong Xu,et al.  Planar gradient metamaterials , 2016 .

[37]  Xiaoying Liu,et al.  Roadmap on optical metamaterials , 2016 .

[38]  A. Kavokin,et al.  Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles , 2016, Light: Science & Applications.

[39]  Shuyu Zhou,et al.  Fifteen years of cold matter on the atom chip: promise, realizations, and prospects , 2016, Journal of modern optics.

[40]  Shlomi Dolev,et al.  All-optical design for inherently energy-conserving reversible gates and circuits , 2016, Nature communications.

[41]  Miguel Beruete,et al.  Increasing Surface Plasmons Propagation via Photonic Nanojets with Periodically Spaced 3D Dielectric Cuboids , 2016 .

[42]  L. Caspani,et al.  Enhanced Nonlinear Refractive Index in ε-Near-Zero Materials. , 2016, Physical review letters.

[43]  Siegfried Janz,et al.  Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides. , 2016, Optics express.

[44]  I. Shomroni,et al.  Extraction of a single photon from an optical pulse , 2015, Nature Photonics.

[45]  C. Felser,et al.  Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP , 2015, Nature Communications.

[46]  A. Kavokin,et al.  Giant absorption of light by molecular vibrations on a chip , 2015, Scientific Reports.

[47]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[48]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[49]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[50]  A. Leinse,et al.  On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. , 2015, Optics express.

[51]  Vadim Kovalyuk,et al.  Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths , 2015, Scientific Reports.

[52]  Mengtao Sun,et al.  Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits , 2015, Light: Science & Applications.

[53]  M. Zervas,et al.  Transmittance and surface intensity in 3D composite plasmonic waveguides. , 2015, Optics express.

[54]  D. Gudbjartsson,et al.  Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma , 2015, Nature Communications.

[55]  W. Schade,et al.  Femtosecond laser writing of Bragg grating waveguide bundles in bulk glass. , 2015, Optics Letters.

[56]  Graham D. Bruce,et al.  Single-atom imaging of fermions in a quantum-gas microscope , 2015, Nature Physics.

[57]  E. Hinds,et al.  Enhanced oscillation lifetime of a Bose–Einstein condensate in the 3D/1D crossover , 2015, 1502.00430.

[58]  Xiang Zhang,et al.  High purcell factor due to coupling of a single emitter to a dielectric slot waveguide. , 2015, Nano letters.

[59]  Igor E. Mazets,et al.  Experimental observation of a generalized Gibbs ensemble , 2014, Science.

[60]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[61]  A. P. Vinogradov,et al.  PT-symmetry in optics , 2014 .

[62]  P. Xu,et al.  On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. , 2014, Physical review letters.

[63]  S. Rolston,et al.  A nanowaveguide platform for collective atom-light interaction , 2014, 1408.6339.

[64]  Wei Shi,et al.  Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. , 2014, Optics express.

[65]  Wei Du,et al.  Tunability Analysis of a Graphene-Embedded Ring Modulator , 2014, IEEE Photonics Technology Letters.

[66]  Jakob Reichel,et al.  Entangled States of More Than 40 Atoms in an Optical Fiber Cavity , 2014, Science.

[67]  Hong Chen,et al.  Experimental demonstration of a coherent perfect absorber with PT phase transition. , 2014, Physical review letters.

[68]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[69]  G. Lo,et al.  A single adiabatic microring-based laser in 220 nm silicon-on-insulator. , 2014, Optics express.

[70]  Pao Tai Lin,et al.  Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing. , 2014, Nano letters.

[71]  R. Sundaram,et al.  Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. , 2013, Optics express.

[72]  Ashok V. Krishnamoorthy,et al.  Ring Resonator Modulators in Silicon for Interchip Photonic Links , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[73]  Lech Wosinski,et al.  Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. , 2013, Optics letters.

[74]  Jing Zhang,et al.  Ultra-compact low loss polarization insensitive silicon waveguide splitter. , 2013, Optics express.

[75]  S. Ornes Metamaterials , 2013, Proceedings of the National Academy of Sciences.

[76]  R. A. Williams,et al.  The spin Hall effect in a quantum gas , 2013, Nature.

[77]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[78]  V. Galitski,et al.  Spin–orbit coupling in quantum gases , 2013, Nature.

[79]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[80]  Irina Veretennicoff,et al.  Enhancing optical gradient forces with metamaterials. , 2013, Physical review letters.

[81]  R. Bailey,et al.  Single domain antibodies for the detection of ricin using silicon photonic microring resonator arrays. , 2013, Analytical chemistry.

[82]  F. B. Arango,et al.  Plasmonic antennas hybridized with dielectric waveguides , 2012, CLEO: 2013.

[83]  C. M. Natarajan,et al.  Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. , 2012, Optics express.

[84]  Pierre Berini,et al.  Thin Au surface plasmon waveguide Schottky detectors on p-Si , 2012, Nanotechnology.

[85]  Jinzhong Yu,et al.  High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. , 2012, Optics express.

[86]  Lars Zimmermann,et al.  Photonic Integrated Circuits for Optical Communication , 2012 .

[87]  Toshiharu Makino,et al.  Electrically driven single-photon source at room temperature in diamond , 2012, Nature Photonics.

[88]  Immanuel Bloch,et al.  The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition , 2012, Nature.

[89]  Gregor Weihs,et al.  Monolithic source of photon pairs. , 2012, Physical review letters.

[90]  M. Huang,et al.  Sensitivity enhancement in TE mode nonlinear planar optical waveguide sensor with metamaterial layer , 2012 .

[91]  S. Koester,et al.  High-speed waveguide-coupled graphene-on-graphene optical modulators , 2012, 1202.4791.

[92]  P. Dumon,et al.  Silicon microring resonators , 2012 .

[93]  I. Mazets,et al.  Relaxation and Prethermalization in an Isolated Quantum System , 2011, Science.

[94]  Jürgen Popp,et al.  Challenges in Molecular Structure Determination , 2012 .

[95]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[96]  J. P. Sprengers,et al.  Waveguide superconducting single-photon detectors for integrated quantum photonic circuits , 2011, 1108.5107.

[97]  Jakob Reichel,et al.  Measurement of the internal state of a single atom without energy exchange , 2011, Nature.

[98]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[99]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[100]  T. Baehr‐Jones,et al.  Silicon-polymer hybrid slot waveguide ring-resonator modulator. , 2011, Optics express.

[101]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[102]  C. Liao,et al.  Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. , 2010, Optics letters.

[103]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[104]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[105]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[106]  Pierre Berini,et al.  Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon. , 2010, Optics letters.

[107]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[108]  S. Dawkins,et al.  Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. , 2009, Physical review letters.

[109]  M.K. Smit,et al.  Monolithic AWG-based Discretely Tunable Laser Diode With Nanosecond Switching Speed , 2009, IEEE Photonics Technology Letters.

[110]  J. Shmulovich,et al.  Integrated Low-Jitter 400-MHz Femtosecond Waveguide Laser , 2009, IEEE Photonics Technology Letters.

[111]  M. S. Abrishamian,et al.  Power splitters with different output power levels based on directional coupling. , 2009, Applied optics.

[112]  S. Haroche,et al.  Measurement of the trapping lifetime close to a cold metallic surface on a cryogenic atom-chip , 2009, 0901.4331.

[113]  J. Misewich,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[114]  M. Lipson,et al.  Cavity-enhanced on-chip absorption spectroscopy using microring resonators. , 2008, Optics express.

[115]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[116]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[117]  J. Schmiedmayer,et al.  Long-Range Order in Electronic Transport Through Disordered Metal Films , 2008, Science.

[118]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[119]  Gregory P. Nordin,et al.  Compact 90° trench-based splitter for silicon-on-insulator rib waveguides , 2007 .

[120]  Giuseppe Marmo,et al.  Quantum Zeno dynamics and quantum Zeno subspaces , 2007, 0711.4280.

[121]  Hwa-Yaw Tam,et al.  High-Resolution Strain and Temperature Sensor Based on Distributed Bragg Reflector Fiber Laser , 2007, IEEE Photonics Technology Letters.

[122]  J. Schmiedmayer,et al.  Non-equilibrium coherence dynamics in one-dimensional Bose gases. , 2007, Nature.

[123]  M. Lipson,et al.  High confinement in silicon slot waveguides with sharp bends. , 2006, Optics express.

[124]  Elias Towe,et al.  Nanowire lasers with distributed-Bragg-reflector mirrors , 2006 .

[125]  Warwick P. Bowen,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[126]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[127]  G. Farrell,et al.  All-fiber multimode-interference-based refractometer sensor: proposal and design. , 2006, Optics letters.

[128]  A. Aspect,et al.  Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes. , 2005, Physical review letters.

[129]  Reginald K. Lee,et al.  Highly sensitive fiber Bragg grating refractive index sensors , 2005 .

[130]  Ralf Siebert,et al.  Infrared integrated optical evanescent field sensor for gas analysis: Part I: System design , 2005 .

[131]  D. Mailly,et al.  Atom chips in the real world: the effects of wire corrugation , 2004, physics/0407094.

[132]  S. Hughes Enhanced single-photon emission from quantum dots in photonic crystal waveguides and nanocavities. , 2004, Optics letters.

[133]  Eric Cassan,et al.  Ultracompact splitter for submicrometer silicon-on-insulator rib waveguides. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[134]  P. Dumon,et al.  Ultralow-loss 3-dB photonic crystal waveguide splitter. , 2004, Optics letters.

[135]  D. Qing,et al.  Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability , 2004 .

[136]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[137]  J. Schmiedmayer,et al.  Fundamental limits for coherent manipulation on atom chips , 2002, quant-ph/0208165.

[138]  J. Grdadolnik Atr-ftir spectroscopy: Its advantages and limitations , 2002 .

[139]  V. Letokhov,et al.  REVIEW: Spontaneous emission of an atom in the presence of nanobodies , 2001 .

[140]  Reinhardt Willsch,et al.  A fibre Bragg grating refractometer , 2001 .

[141]  M. Tomaš,et al.  Decay of excited molecules in absorbing planar cavities , 1997 .

[142]  Y. Ovchinnikov,et al.  An atomic trap based on evanescent light waves , 1991 .

[143]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[144]  F. Leonberger,et al.  Integrated optics , 1986, IEEE Journal of Quantum Electronics.