Flip Distance to a Non-crossing Perfect Matching

A perfect straight-line matching $M$ on a finite set $P$ of points in the plane is a set of segments such that each point in $P$ is an endpoint of exactly one segment. $M$ is non-crossing if no two segments in $M$ cross each other. Given a perfect straight-line matching $M$ with at least one crossing, we can remove this crossing by a flip operation. The flip operation removes two crossing segments on a point set $Q$ and adds two non-crossing segments to attain a new perfect matching $M'$. It is well known that after a finite number of flips, a non-crossing matching is attained and no further flip is possible. However, prior to this work, no non-trivial upper bound on the number of flips was known. If $g(n)$ (resp.~$k(n)$) is the maximum length of the longest (resp.~shortest) sequence of flips starting from any matching of size $n$, we show that $g(n) = O(n^3)$ and $g(n) = \Omega(n^2)$ (resp.~$k(n) = O(n^2)$ and $k(n) = \Omega (n)$).

[1]  Ferran Hurtado,et al.  Compatible spanning trees , 2014, Comput. Geom..

[2]  Alexander Pilz,et al.  Flips in combinatorial pointed pseudo-triangulations with face degree at most four , 2014, Int. J. Comput. Geom. Appl..

[3]  Sergey Bereg,et al.  Compatible geometric matchings , 2007, Comput. Geom..

[4]  Günter Rote,et al.  Point sets with many non-crossing matchings , 2015, ArXiv.

[5]  Günter Rote,et al.  Point sets with many non-crossing perfect matchings , 2018, Comput. Geom..

[6]  Prosenjit Bose,et al.  Flips in planar graphs , 2009, Comput. Geom..

[7]  Charles L. Lawson,et al.  Properties of n-dimensional triangulations , 1986, Comput. Aided Geom. Des..

[8]  Csaba D. Tóth,et al.  Disjoint compatible geometric matchings , 2011, SoCG '11.

[9]  Günter Rote,et al.  Quasi-parallel segments and characterization of unique bichromatic matchings , 2015, J. Comput. Geom..

[10]  Jan van Leeuwen,et al.  Untangling a Travelling Salesman Tour in the Plane , 1981, WG.

[11]  Marc Noy,et al.  Graphs of Triangulations and Perfect Matchings , 2005, Graphs Comb..

[12]  Alexander Pilz,et al.  Flip Distance Between Triangulations of a Simple Polygon is NP-Complete , 2015, Discret. Comput. Geom..

[13]  Tillmann Miltzow,et al.  Disjoint Compatibility Graph of Non-Crossing Matchings of Points in Convex Position , 2014, Electron. J. Comb..

[14]  Franz Aurenhammer,et al.  Transforming spanning trees and pseudo-triangulations , 2005, EuroCG.

[15]  Luis Barba,et al.  Bichromatic compatible matchings , 2015, Comput. Geom..

[16]  Bettina Speckmann,et al.  Flip Graphs of Bounded-Degree Triangulations , 2009, Electron. Notes Discret. Math..

[17]  Mamoru Watanabe,et al.  The Number of Flips Required to Obtain Non-crossing Convex Cycles , 2007, KyotoCGGT.

[18]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..