暂无分享,去创建一个
[1] Ferran Hurtado,et al. Compatible spanning trees , 2014, Comput. Geom..
[2] Alexander Pilz,et al. Flips in combinatorial pointed pseudo-triangulations with face degree at most four , 2014, Int. J. Comput. Geom. Appl..
[3] Sergey Bereg,et al. Compatible geometric matchings , 2007, Comput. Geom..
[4] Günter Rote,et al. Point sets with many non-crossing matchings , 2015, ArXiv.
[5] Günter Rote,et al. Point sets with many non-crossing perfect matchings , 2018, Comput. Geom..
[6] Prosenjit Bose,et al. Flips in planar graphs , 2009, Comput. Geom..
[7] Charles L. Lawson,et al. Properties of n-dimensional triangulations , 1986, Comput. Aided Geom. Des..
[8] Csaba D. Tóth,et al. Disjoint compatible geometric matchings , 2011, SoCG '11.
[9] Günter Rote,et al. Quasi-parallel segments and characterization of unique bichromatic matchings , 2015, J. Comput. Geom..
[10] Jan van Leeuwen,et al. Untangling a Travelling Salesman Tour in the Plane , 1981, WG.
[11] Marc Noy,et al. Graphs of Triangulations and Perfect Matchings , 2005, Graphs Comb..
[12] Alexander Pilz,et al. Flip Distance Between Triangulations of a Simple Polygon is NP-Complete , 2015, Discret. Comput. Geom..
[13] Tillmann Miltzow,et al. Disjoint Compatibility Graph of Non-Crossing Matchings of Points in Convex Position , 2014, Electron. J. Comb..
[14] Franz Aurenhammer,et al. Transforming spanning trees and pseudo-triangulations , 2005, EuroCG.
[15] Luis Barba,et al. Bichromatic compatible matchings , 2015, Comput. Geom..
[16] Bettina Speckmann,et al. Flip Graphs of Bounded-Degree Triangulations , 2009, Electron. Notes Discret. Math..
[17] Mamoru Watanabe,et al. The Number of Flips Required to Obtain Non-crossing Convex Cycles , 2007, KyotoCGGT.
[18] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..