A dichotomy theorem for constraint satisfaction problems on a 3-element set

The Constraint Satisfaction Problem (CSP) provides a common framework for many combinatorial problems. The general CSP is known to be NP-complete; however, certain restrictions on a possible form of constraints may affect the complexity and lead to tractable problem classes. There is, therefore, a fundamental research direction, aiming to separate those subclasses of the CSP that are tractable and those which remain NP-complete.Schaefer gave an exhaustive solution of this problem for the CSP on a 2-element domain. In this article, we generalise this result to a classification of the complexity of the CSP on a 3-element domain. The main result states that every subproblem of the CSP is either tractable or NP-complete, and the criterion separating them is that conjectured in Bulatov et al. [2005] and Bulatov and Jeavons [2001b]. We also characterize those subproblems for which standard constraint propagation techniques provide a decision procedure. Finally, we exhibit a polynomial time algorithm which, for a given set of allowed constraints, outputs if this set gives rise to a tractable problem class. To obtain the main result and the algorithm, we extensively use the algebraic technique for the CSP developed in Jeavons [1998b], Bulatov et al.[2005], and Bulatov and Jeavons [2001b].

[1]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[2]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[3]  Rina Dechter,et al.  Network-based heuristics for constraint satisfaction problems , 1988 .

[4]  Martin C. Cooper An Optimal k-Consistency Algorithm , 1989, Artif. Intell..

[5]  Klaus Denecke,et al.  Universal Algebra and Applications in Theoretical Computer Science , 2018 .

[6]  Peter Jeavons,et al.  The complexity of maximal constraint languages , 2001, STOC '01.

[7]  Rina Dechter,et al.  From Local to Global Consistency , 1990, Artif. Intell..

[8]  Rina Dechter,et al.  Experimental Evaluation of Preprocessing Algorithms for Constraint Satisfaction Problems , 1994, Artif. Intell..

[9]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[10]  Peter Jeavons,et al.  Constructing Constraints , 1998, CP.

[11]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[12]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[13]  P. Jeavons Algebraic structures in combinatorial problems , 2001 .

[14]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[15]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[16]  Andrei A. Bulatov,et al.  Mal'tsev constraints are tractable , 2002, Electron. Colloquium Comput. Complex..

[17]  Rina Dechter,et al.  Structure-Driven Algorithms for Truth Maintenance , 1996, Artif. Intell..

[18]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[19]  Phokion G. Kolaitis Constraint Satisfaction, Databases, and Logic , 2003, IJCAI.

[20]  Peter van Beek,et al.  Local and Global Relational Consistency , 1995, Theor. Comput. Sci..

[21]  Rina Dechter,et al.  Network-Based Heuristics for Constraint-Satisfaction Problems , 1987, Artif. Intell..

[22]  Phokion G. Kolaitis,et al.  A Game-Theoretic Approach to Constraint Satisfaction , 2000, AAAI/IAAI.

[23]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[24]  Justin Pearson,et al.  Constraints and universal algebra , 1998, Annals of Mathematics and Artificial Intelligence.

[25]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[26]  Bernard A. Nadel,et al.  Constraint Satisfaction in Prolog: Complexity and Theory-Based Heuristics , 1995, Inf. Sci..

[27]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[28]  A. Bulatov Combinatorial problems raised from 2-semilattices , 2006 .

[29]  Á. Szendrei Simple surjective algebras having no proper subalgebras , 1990 .

[30]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[31]  Vipin Kumar,et al.  Algorithms for Constraint-Satisfaction Problems: A Survey , 1992, AI Mag..

[32]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[33]  Georg Gottlob,et al.  A Comparison of Structural CSP Decomposition Methods , 1999, IJCAI.

[34]  Pascal Van Hentenryck,et al.  A Generic Arc-Consistency Algorithm and its Specializations , 1992, Artif. Intell..

[35]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[36]  James F. Allen Natural language understanding , 1987, Bejnamin/Cummings series in computer science.

[37]  Moshe Y. Vardi Constraint satisfaction and database theory: a tutorial , 2000, PODS.

[38]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[39]  Eddie Schwalb,et al.  Temporal Constraints: A Survey , 1998, Constraints.

[40]  Peter Jeavons,et al.  Tractable constraints closed under a binary operation , 2000 .

[41]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[42]  Jiang Lin,et al.  Automobile transmission design as a constraint satisfaction problem: modelling the kinematic level , 1991, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[43]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.