Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI.

We present the first simultaneous measurements of evoked potentials (EPs) and fMRI hemodynamic responses to visual stimulation. Visual evoked potentials (VEPs) were recorded both inside and outside the static 3T magnetic field, and during fMRI examination. We designed, constructed, and tested a non-magnetic 64-channel EEG recording cap. By using a large number of EEG channels it is possible to design a spatial filter capable of removing the artifact noise present when recording EEG/EPs within a strong magnetic field. We show that the designed spatial filter is capable of recovering the ballistocardiogram-contaminated original EEG signal. Isopotential plots of the electrode array recordings at the peak of the VEP response (approximately 100ms) correspond well with simultaneous fMRI observed activated areas of primary and secondary visual cortices.