Differentiation formulas for probability functions: The transformation method

The reliability of a technical or an economical stochastic system is measured usually by probability functions of the type P ( x ) = P ( y ~ . , < ( ~ ) y i ( a ( o , ) , x) < ( , < ) y , , , i = l . . . . . m) (1) a n d / o r P i ( x ) = P i ( z . . i < ( < ~ ) y i ( a ( c o ) , x ) < (~<)y,,i) , i = 1 . . . . . m. ( l . l ) Here y ~ , , < ( ~ ) y , ( a , x ) < ( V ) y , , , , i = l . . . . . , , , (2) are the basic operating conditions or behavioral constraints of the underlying system, where Y = ( Yl . . . . . Yi . . . . . Y,,)' (3) are certain response, output or performance variables, e.g. displacements, stresses, strains, forces, weight in structural design or the total costs, deviations between the demands and production outputs in a production problem. The response variables y/ are functions y i = Y i ( a , x) , i = 1 . . . . . rn, (3.1) of a decision r-vector x = ( x I . . . . . x k , . . . , x r ) ' and a parameter u-vector a = (a I . . . . . aj . . . . . a~)', where xe, k = 1 . . . . . r, are the determinist ic (nomina l ) design input variables or deterministic system coefficients, e.g. sizing variables, geometrical

[1]  K. Marti,et al.  Approximations and Derivatives of Probability Functions , 1994 .

[2]  Stan Uryasev,et al.  Derivatives of probability functions and some applications , 1995, Ann. Oper. Res..

[3]  R. Rackwitz,et al.  New light on first- and second-order reliability methods , 1987 .

[4]  S. Uryasev A differentiation formula for integrals overseas given by inclusion , 1989 .

[5]  Yuri Ermoliev,et al.  Numerical techniques for stochastic optimization , 1988 .

[6]  E. Gobet,et al.  Stochastic Linear Programming , 2022 .

[7]  Palle Thoft-Christensen,et al.  Structural Reliability Theory and Its Applications , 1982 .

[8]  Niels Olhoff,et al.  Optimization Methods in Structural Design , 1982 .

[9]  H. Saunders,et al.  Matrix Structural Analysis , 1979 .

[10]  Claus Mattheck,et al.  Engineering Optimization in Design Processes , 1991 .

[11]  V. Norkin The Analysis and Optimization of Probability Functions , 1993 .

[12]  R. Rackwitz,et al.  FORMULATIONS OF RELIABILITY-ORIENTED OPTIMIZATION , 1987 .

[13]  K. Doliński,et al.  First-order second-moment approximation in reliability of structural systems: Critical review and alternative approach , 1982 .

[14]  S. P. Uryasev Differentiation Formula for Integrals over Sets Given by Inequalities , 1991 .

[15]  Tamás Szántai,et al.  Evaluation of a special multivariate gamma distribution function , 1986 .

[16]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[17]  Reuven Y. Rubinstein,et al.  Sensitivity analysis of discrete event systems by the “push out” method , 1992, Ann. Oper. Res..

[18]  H. Wenzel M. Barner / F. Flohr, Analysis I, De Gruyter Lehrbuch, 486 S., Berlin‐New York 1974. Walter de Gruyter. DM 48,— , 1975 .

[19]  G. Schuëller,et al.  A critical appraisal of methods to determine failure probabilities , 1987 .

[20]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[21]  K. Breitung,et al.  Asymptotic approximations for multivariate integrals with an application to multinormal probabilities , 1989 .

[22]  K. Breitung Parameter Sensitivity of Failure Probabilities , 1991 .

[23]  A. Prékopa,et al.  Flood control reservoir system design using stochastic programming , 1978 .

[24]  S. Uryasev Derivatives of probability functions and integrals over sets given by inequalities , 1994 .

[25]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .