Generalized conditional gradient: analysis of convergence and applications

The objectives of this technical report is to provide additional results on the generalized conditional gradient methods introduced by Bredies et al. [BLM05]. Indeed , when the objective function is smooth, we provide a novel certificate of optimality and we show that the algorithm has a linear convergence rate. Applications of this algorithm are also discussed.

[1]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transportation , 2013, NIPS 2013.

[2]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[3]  Nicolas Courty,et al.  Domain Adaptation with Regularized Optimal Transport , 2014, ECML/PKDD.

[4]  Philip A. Knight,et al.  The Sinkhorn-Knopp Algorithm: Convergence and Applications , 2008, SIAM J. Matrix Anal. Appl..

[5]  Gabriel Peyré,et al.  Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..

[6]  Gabriel Peyré,et al.  Regularized Discrete Optimal Transport , 2014, SIAM J. Imaging Sci..

[7]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[8]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[9]  A. Banerjee Convex Analysis and Optimization , 2006 .

[10]  Julien Rabin,et al.  Non-convex Relaxation of Optimal Transport for Color Transfer Between Images , 2015, GSI.

[11]  Lawrence Carin,et al.  Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Olivier Chapelle,et al.  Training a Support Vector Machine in the Primal , 2007, Neural Computation.

[13]  HarchaouiZaid,et al.  Conditional gradient algorithms for norm-regularized smooth convex optimization , 2015 .

[14]  Arnaud Doucet,et al.  Fast Computation of Wasserstein Barycenters , 2013, ICML.

[15]  Martin Jaggi,et al.  Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.

[16]  Zaïd Harchaoui,et al.  Conditional gradient algorithms for norm-regularized smooth convex optimization , 2013, Math. Program..

[17]  Julien Rabin,et al.  Regularized Discrete Optimal Transport , 2013, SIAM J. Imaging Sci..

[18]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[19]  Mark W. Schmidt,et al.  Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm , 2009, AISTATS.

[20]  Nicolas Courty,et al.  Optimal Transport for Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  K. Bredies,et al.  Equivalence of a Generalized Conditional Gradient Method and the Method of Surrogate Functionals , 2005 .

[22]  Ben Taskar,et al.  Joint covariate selection and joint subspace selection for multiple classification problems , 2010, Stat. Comput..

[23]  Lorenzo Rosasco,et al.  Elastic-net regularization in learning theory , 2008, J. Complex..

[24]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .