Ribosomal Proteins in the Spotlight

ABSTRACT The assignment of specific ribosomal functions to individual ribosomal proteins is difficult due to the enormous cooperativity of the ribosome; however, important roles for distinct ribosomal proteins are becoming evident. Although rRNA has a major role in certain aspects of ribosomal function, such as decoding and peptidyl-transferase activity, ribosomal proteins are nevertheless essential for the assembly and optimal functioning of the ribosome. This is particularly true in the context of interactions at the entrance pore for mRNA, for the translation-factor binding site and at the tunnel exit, where both chaperones and complexes associated with protein transport through membranes bind.

[1]  A. Oleinikov,et al.  The hinge region of Escherichia coli ribosomal protein L7/L12 is required for factor binding and GTP hydrolysis. , 1995, Biochimie.

[2]  K. Nierhaus,et al.  Minimal set of ribosomal components for reconstitution of the peptidyltransferase activity. , 1982, The EMBO journal.

[3]  E. Dabbs,et al.  Translation Elongation by a Hybrid Ribosome in Which Proteins at the GTPase Center of the Escherichia coli Ribosome Are Replaced with Rat Counterparts* , 2002, The Journal of Biological Chemistry.

[4]  J. F. Atkins,et al.  Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA. , 2001, Journal of molecular biology.

[5]  V. Ramakrishnan,et al.  Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form , 2002, Cell.

[6]  A. Gnirke,et al.  The allosteric three-site model for the ribosomal elongation cycle. Analysis with a heteropolymeric mRNA. , 1989, The Journal of biological chemistry.

[7]  E. Dabbs,et al.  Mutational alterations in 50 proteins of the Escherichia coli ribosome , 1978, Molecular and General Genetics MGG.

[8]  Jill K Thompson,et al.  Thermus thermophilus L11 Methyltransferase, PrmA, Is Dispensable for Growth and Preferentially Modifies Free Ribosomal Protein L11 Prior to Ribosome Assembly , 2004, Journal of bacteriology.

[9]  A. Sali,et al.  Architecture of the Protein-Conducting Channel Associated with the Translating 80S Ribosome , 2001, Cell.

[10]  J. Ofengand,et al.  Pseudouridines and pseudouridine synthases of the ribosome. , 2001, Cold Spring Harbor symposia on quantitative biology.

[11]  R. Huber,et al.  Flexibility, conformational diversity and two dimerization modes in complexes of ribosomal protein L12 , 2000, The EMBO journal.

[12]  M. Ehrenberg,et al.  Regulatory Nascent Peptides in the Ribosomal Tunnel , 2002, Cell.

[13]  Marina V. Rodnina,et al.  Structural Basis for the Function of the Ribosomal L7/12 Stalk in Factor Binding and GTPase Activation , 2005, Cell.

[14]  R. Milligan,et al.  Location of exit channel for nascent protein in 80S ribosome , 1986, Nature.

[15]  M. Kozak,et al.  Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs , 1989, Molecular and cellular biology.

[16]  Mark Proctor,et al.  The Solution Structure of the S1 RNA Binding Domain: A Member of an Ancient Nucleic Acid–Binding Fold , 1997, Cell.

[17]  Daniel N. Wilson,et al.  The ribosome through the looking glass. , 2003, Angewandte Chemie.

[18]  J. Yates,et al.  Direct analysis of protein complexes using mass spectrometry , 1999, Nature Biotechnology.

[19]  Joachim Frank,et al.  EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome , 1999, Nature Structural Biology.

[20]  B. Mollet,et al.  A Functional Interaction , 2001 .

[21]  F. Schmidt,et al.  Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. , 1982, The Journal of biological chemistry.

[22]  M Kjeldgaard,et al.  Positions of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit of Escherichia coli. , 1988, Journal of molecular biology.

[23]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[24]  H. Wittmann,et al.  Ribosomal proteins. XII. Number of proteins in small and large ribosomal subunits of Escherichia coli as determined by two-dimensional gel electrophoresis. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[26]  A. Murchie,et al.  Structural basis for contrasting activities of ribosome binding thiazole antibiotics. , 2003, Chemistry & biology.

[27]  H. Wittmann Structure of ribosomes. , 1979, Canadian journal of biochemistry.

[28]  J. F. Atkins,et al.  Ribosomal protein L9 interactions with 23 S rRNA: the use of a translational bypass assay to study the effect of amino acid substitutions. , 1996, Journal of molecular biology.

[29]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[30]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[31]  J. L. Nelson,et al.  Transcriptional proofreading in Escherichia coli. , 1989, The EMBO journal.

[32]  E. Kaltschmidt Ribosomal proteins. XIV. Isoelectric points of ribosomal proteins of E. coli as determined by two-dimensional polyacrylamide gel electrophoresis. , 1971, Analytical biochemistry.

[33]  A. Vanet,et al.  Ribosomal protein methylation in Escherichia coli: the gene prmA, encoding the ribosomal protein L11 methyltransferase, is dispensable , 1994, Molecular microbiology.

[34]  H. Noller,et al.  Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Daniel N. Wilson,et al.  Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. , 2004, Molecular cell.

[36]  G. Stöffler,et al.  Localization of ribosomal proteins on the surface of ribosomal subunits from Escherichia coli using immunoelectron microscopy. , 1988, Methods in enzymology.

[37]  A Yonath,et al.  A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. , 1987, Science.

[38]  K Watanabe,et al.  Structural Compensation for the Deficit of rRNA with Proteins in the Mammalian Mitochondrial Ribosome , 2001, The Journal of Biological Chemistry.

[39]  C. Kurland,et al.  30S Ribosomal proteins associated with the 3′‐terminus of 16S RNA , 1975, FEBS letters.

[40]  Akira Wada,et al.  Escherichia coli Ribosome-Associated Protein SRA, Whose Copy Number Increases during Stationary Phase , 2001, Journal of bacteriology.

[41]  R. Haselkorn,et al.  SECONDARY STRUCTURE IN RIBONUCLEIC ACIDS. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[42]  V. Ramakrishnan,et al.  Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. , 2002, Journal of molecular biology.

[43]  Koreaki Ito,et al.  Control of SecA and SecM translation by protein secretion. , 2004, Current opinion in microbiology.

[44]  Harry F. Noller,et al.  The Path of Messenger RNA through the Ribosome , 2001, Cell.

[45]  N. Ban,et al.  Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins , 2004, Nature.

[46]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[47]  M. Pool,et al.  Distinct Modes of Signal Recognition Particle Interaction with the Ribosome , 2002, Science.

[48]  F. Schluenzen,et al.  X‐ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit , 2005, The EMBO journal.

[49]  C. Kurland,et al.  Codon‐specific missense errors in vivo. , 1983, The EMBO journal.

[50]  S. Tishchenko,et al.  Ribosomal protein L1 recognizes the same specific structural motif in its target sites on the autoregulatory mRNA and 23S rRNA , 2005, Nucleic acids research.

[51]  V. Ramakrishnan,et al.  Crystal structure of prokaryotic ribosomal protein L9: a bi‐lobed RNA‐binding protein. , 1994, The EMBO journal.

[52]  H. Eisenberg,et al.  Biochemical, structural, and molecular genetic aspects of halophilism. , 1992, Advances in protein chemistry.

[53]  A. Oleinikov,et al.  A single-headed dimer of Escherichia coli ribosomal protein L7/L12 supports protein synthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Garrett,et al.  The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre. , 1998, Journal of molecular biology.

[55]  M. Akke,et al.  Conformation and dynamics of ribosomal stalk protein L12 in solution and on the ribosome. , 2004, Biochemistry.

[56]  S. Karlin,et al.  Comparative analysis of gene expression among low G+C gram-positive genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Mankin,et al.  A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  C. Squires,et al.  Proteins shared by the transcription and translation machines. , 2000, Annual review of microbiology.

[59]  A. Gnirke,et al.  Allosteric three-site model for the ribosomal elongation cycle , 1990 .

[60]  A. Gudkov The L7/L12 ribosomal domain of the ribosome: structural and functional studies , 1997, FEBS letters.

[61]  M. Rodnina,et al.  Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. , 2000, Molecular cell.

[62]  A. Oleinikov,et al.  Location and domain structure of Escherichia coli ribosomal protein L7/L12: site specific cysteine crosslinking and attachment of fluorescent probes. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[63]  J. Reilly,et al.  Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. , 1999, Analytical biochemistry.

[64]  Jill K Thompson,et al.  Thiostrepton-resistant mutants of Thermus thermophilus. , 2004, Nucleic acids research.

[65]  S. T. Gregory,et al.  Multiple defects in translation associated with altered ribosomal protein L4. , 2004, Nucleic acids research.

[66]  C. Dobson,et al.  Heteronuclear NMR investigations of dynamic regions of intact Escherichia coli ribosomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[67]  R. Brimacombe,et al.  The ribosomal environment of tRNA: crosslinks to rRNA from positions 8 and 20:1 in the central fold of tRNA located at the A, P, or E site. , 1995, RNA: A publication of the RNA Society.

[68]  N. Ban,et al.  L23 protein functions as a chaperone docking site on the ribosome , 2002, Nature.

[69]  E. Dabbs Mutant Studies on the Prokaryotic Ribosome , 1986 .

[70]  C. Elson,et al.  Effect of Pregnancy on the Isoantibody Response in Rabbits , 1971, Nature.

[71]  I. Wool Extraribosomal functions of ribosomal proteins. , 1996, Trends in biochemical sciences.

[72]  V. Ramakrishnan,et al.  Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy. , 1996, Journal of molecular biology.

[73]  J. Frank,et al.  Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R. Agrawal,et al.  Structure of the Mammalian Mitochondrial Ribosome Reveals an Expanded Functional Role for Its Component Proteins , 2003, Cell.

[75]  J Frank,et al.  Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[76]  G. Edelman,et al.  The ribosome filter hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[77]  R. Traut,et al.  Monoclonal antibodies to Escherichia coli ribosomal proteins L9 and L10. Effects on ribosome function and localization of L9 on the surface of the 50 S ribosomal subunit. , 1991, The Journal of biological chemistry.

[78]  C. Gualerzi,et al.  Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control , 2002, Molecular microbiology.

[79]  E. Müller,et al.  Phylogenetic relationship of organisms obtained by ribosomal protein comparison , 1997, Cellular and Molecular Life Sciences CMLS.

[80]  J. Ebel,et al.  Identification of a 16-S RNA fragment crosslinked to protein S1 within Escherichia coli ribosomal 30-S subunits by the use of a crosslinking reagent: ethyl 4-azidobenzoylaminoacetimidate. , 2005, European journal of biochemistry.

[81]  Joachim Frank,et al.  Structure of the signal recognition particle interacting with the elongation-arrested ribosome , 2004, Nature.

[82]  G. Stöffler,et al.  Reconstitution of a GTPase Activity a 50S Ribosomal Protein from E. coli , 1971 .

[83]  Scott M Stagg,et al.  Modeling a minimal ribosome based on comparative sequence analysis. , 2002, Journal of molecular biology.

[84]  J. Frank,et al.  Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome , 2004, EMBO reports.

[85]  K. Nierhaus,et al.  The assembly of prokaryotic ribosomes. , 1991, Biochimie.

[86]  R. Gourse,et al.  Regulation of the synthesis of ribosomes and ribosomal components. , 1984, Annual review of biochemistry.

[87]  H. Noller,et al.  Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites , 1989, Cell.

[88]  H. Noller,et al.  The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit. , 2000, Journal of molecular biology.

[89]  L. Spremulli,et al.  The Small Subunit of the Mammalian Mitochondrial Ribosome , 2001, The Journal of Biological Chemistry.

[90]  S. T. Gregory,et al.  Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. , 1999, Journal of molecular biology.

[91]  Daniel N. Wilson,et al.  Ribosomal crystallography: peptide bond formation and its inhibition. , 2003, Biopolymers.

[92]  Koreaki Ito,et al.  The Ribosomal Exit Tunnel Functions as a Discriminating Gate , 2002, Cell.

[93]  E. Lattman,et al.  Crystal structure of a conserved ribosomal protein-RNA complex. , 1999, Science.

[94]  Frank Schluenzen,et al.  Structural insight into the role of the ribosomal tunnel in cellular regulation , 2003, Nature Structural Biology.

[95]  T. Cech,et al.  The Ribosome Is a Ribozyme , 2000, Science.

[96]  H. Noller,et al.  Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[97]  A. Mankin,et al.  Cross-linking in the Living Cell Locates the Site of Action of Oxazolidinone Antibiotics* , 2003, Journal of Biological Chemistry.

[98]  K. Nierhaus,et al.  How the ribosome moves along the mRNA during protein synthesis. , 1994, The Journal of biological chemistry.

[99]  G. Thomas The S6 kinase signaling pathway in the control of development and growth. , 2002, Biological research.

[100]  Olivier Poch,et al.  Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. , 2002, Nucleic acids research.

[101]  M. Ehrenberg,et al.  Simultaneous binding of trigger factor and signal recognition particle to the E. coli ribosome. , 2004, Biochimie.

[102]  L. Brakier-Gingras,et al.  A Functional Interaction between Ribosomal Proteins S7 and S11 within the Bacterial Ribosome* , 2003, Journal of Biological Chemistry.

[103]  C. Robinson,et al.  Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[104]  F. Schluenzen,et al.  Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria , 2001, Nature.

[105]  T. Steitz,et al.  The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. , 2004, Journal of molecular biology.

[106]  J. Wower,et al.  Ribosomal Protein L27 Participates in both 50 S Subunit Assembly and the Peptidyl Transferase Reaction* , 1998, The Journal of Biological Chemistry.

[107]  R. Gutell,et al.  A structural model for the large subunit of the mammalian mitochondrial ribosome. , 2006, Journal of molecular biology.

[108]  Daniel N. Wilson,et al.  High heterogeneity within the ribosomal proteins of the Arabidopsis thaliana 80S ribosome , 2005, Plant Molecular Biology.

[109]  A. Dahlberg,et al.  Binding of ribosomal protein S1 of Escherichia coli to the 3' end of 16S rRNA. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[110]  J. Walleczek,et al.  Three-dimensional localization of the NH2- and carboxyl-terminal domain of ribosomal protein S1 on the surface of the 30 S subunit from Escherichia coli. , 1990, The Journal of biological chemistry.

[111]  A. Wada Growth phase coupled modulation of Escherichia coli ribosomes , 1998, Genes to cells : devoted to molecular & cellular mechanisms.

[112]  K. Nierhaus,et al.  Pools of ribosomal proteins in Escherichia coli. Studies on the exchange of proteins between pools and ribosomes. , 1975, European journal of biochemistry.

[113]  N. Brot,et al.  Chemistry and biology ofE. coli ribosomal protein L12 , 1981, Molecular and Cellular Biochemistry.

[114]  J. Frank,et al.  Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM , 2004, Nature Structural &Molecular Biology.

[115]  K Watanabe,et al.  Proteomic Analysis of the Mammalian Mitochondrial Ribosome , 2001, The Journal of Biological Chemistry.

[116]  Richard Brimacombe,et al.  The Database of Ribosomal Cross links (DRC) , 1998, Nucleic Acids Res..

[117]  M. Sørensen,et al.  Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. , 1998, Journal of molecular biology.

[118]  H. Noller,et al.  mRNA Helicase Activity of the Ribosome , 2005, Cell.

[119]  J. Beckmann,et al.  Mapping proteins of the 50S subunit from Escherichia coli ribosomes. , 2001, Biochimica et biophysica acta.

[120]  G. Kramer,et al.  Structure, Function, and Genetics of Ribosomes , 1986, Springer Series in Molecular Biology.

[121]  V. Ramakrishnan,et al.  Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. , 1998, Trends in biochemical sciences.

[122]  J. Frank,et al.  A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome , 1995, Nature.

[123]  L. Lindahl,et al.  Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. , 1994, Progress in nucleic acid research and molecular biology.

[124]  B. Golden,et al.  Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance. , 1998, Journal of molecular biology.

[125]  M. Springer,et al.  Double molecular mimicry in Escherichia coli: binding of ribosomal protein L20 to its two sites in mRNA is similar to its binding to 23S rRNA , 2005, Molecular microbiology.

[126]  Joachim Frank,et al.  Visualization of Trna Movements on the Escherichia coli 70s Ribosome during the Elongation Cycle , 2000, The Journal of cell biology.

[127]  M. Wahl,et al.  Structure and function of the acidic ribosomal stalk proteins. , 2002, Current protein & peptide science.

[128]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[129]  Narayanan Eswar,et al.  Structure of the 80S Ribosome from Saccharomyces cerevisiae—tRNA-Ribosome and Subunit-Subunit Interactions , 2001, Cell.

[130]  U. Geigenmüller,et al.  The allosteric three-site model for the ribosomal elongation cycle. New insights into the inhibition mechanisms of aminoglycosides, thiostrepton, and viomycin. , 1988, The Journal of biological chemistry.

[131]  J Frank,et al.  The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. , 2001, Molecular cell.

[132]  Thomas A Steitz,et al.  RNA, the first macromolecular catalyst: the ribosome is a ribozyme. , 2003, Trends in biochemical sciences.

[133]  Daniel N. Wilson,et al.  Dissection of the mechanism for the stringent factor RelA. , 2002, Molecular cell.

[134]  S. Yokoyama,et al.  Solution structure of ribosomal protein L16 from Thermus thermophilus HB8. , 2004, Journal of molecular biology.

[135]  T. Nakamoto,et al.  Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. , 1972, The Journal of biological chemistry.

[136]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[137]  P. Stewart,et al.  Cryo-electron Microscopic Localization of Protein L7/L12 within the Escherichia coli 70 S Ribosome by Difference Mapping and Nanogold Labeling* , 2001, The Journal of Biological Chemistry.

[138]  Jill K Thompson,et al.  Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. , 2002, Journal of molecular biology.

[139]  R. Green,et al.  RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli. , 2004, RNA.

[140]  D. Apirion,et al.  Binding of erythromycin to the 50S ribosomal subunit is affected by alterations in the 30S ribosomal subunit , 1976, Molecular and General Genetics MGG.

[141]  H. Thelander On Multiple Defects , 1976 .

[142]  Daniel N. Wilson,et al.  Localization of the trigger factor binding site on the ribosomal 50S subunit. , 2003, Journal of molecular biology.

[143]  J A Langer,et al.  A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. , 1987, Science.

[144]  A. Böck,et al.  Bacterial ribosomes with two ambiguity mutations: Effects on translational fidelity, on the response to aminoglycosides and on the rate of protein synthesis , 1979, Molecular and General Genetics MGG.

[145]  Anders Liljas,et al.  Structure of the L1 protuberance in the ribosome , 2003, Nature Structural Biology.

[146]  Frank Schluenzen,et al.  Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. , 2003, Molecular cell.

[147]  A. Gudkov,et al.  Overexpression of L7/L12 protein with mutations in its flexible region. , 1991, Biochimie.

[148]  U. Geigenmüller,et al.  Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non‐cognate aminoacyl‐tRNA to the A site. , 1990, The EMBO journal.

[149]  A. Subramanian Structure and functions of ribosomal protein S1. , 1983, Progress in nucleic acid research and molecular biology.

[150]  Daniel N. Wilson,et al.  Maintaining the Ribosomal Reading Frame The Influence of the E Site during Translational Regulation of Release Factor 2 , 2004, Cell.

[151]  J. Ballesta,et al.  Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation , 2004, The EMBO journal.