A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine–acetylcholine synaptic balance

[1]  Charles J. Wilson,et al.  RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion , 2006, Nature Neuroscience.

[2]  Henry H. Yin,et al.  Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons , 2006, Neuron.

[3]  J. Langston,et al.  Chronic Oral Nicotine Normalizes Dopaminergic Function and Synaptic Plasticity in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Primates , 2006, The Journal of Neuroscience.

[4]  P. Calabresi,et al.  Plastic and behavioral abnormalities in experimental Huntington's disease: A crucial role for cholinergic interneurons , 2006, Neurobiology of Disease.

[5]  E. Bracci,et al.  Excitatory effects of serotonin on rat striatal cholinergic interneurones , 2005, The Journal of physiology.

[6]  P. Celada,et al.  The activation of 5‐HT2A receptors in prefrontal cortex enhances dopaminergic activity , 2005, Journal of neurochemistry.

[7]  P. Stanzione,et al.  Pergolide effect on cognitive functions in early-mild Parkinson’s disease , 2005, Journal of Neural Transmission.

[8]  Michael J. Frank,et al.  By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism , 2004, Science.

[9]  Günther Deuschl,et al.  Rivastigmine for dementia associated with Parkinson's disease. , 2004, The New England journal of medicine.

[10]  Norman M. Weinberger,et al.  Consequences of failures to meet standards in learning and memory , 2004, Nature Reviews Neuroscience.

[11]  Nicolas Maurice,et al.  D2 Dopamine Receptor-Mediated Modulation of Voltage-Dependent Na+ Channels Reduces Autonomous Activity in Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[12]  J. Wess,et al.  M2 Muscarinic Acetylcholine Receptor Knock-Out Mice Show Deficits in Behavioral Flexibility, Working Memory, and Hippocampal Plasticity , 2004, The Journal of Neuroscience.

[13]  R. Palmiter,et al.  Dopamine Modulates Release from Corticostriatal Terminals , 2004, The Journal of Neuroscience.

[14]  K. R. Ridderinkhof,et al.  The Role of the Medial Frontal Cortex in Cognitive Control , 2004, Science.

[15]  J. Paul Bolam,et al.  Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? , 2004, Trends in Neurosciences.

[16]  Michael E. Ragozzino,et al.  Differential effects of M1 muscarinic receptor blockade and nicotinic receptor blockade in the dorsomedial striatum on response reversal learning , 2004, Behavioural Brain Research.

[17]  M. Quik Smoking, nicotine and Parkinson's disease , 2004, Trends in Neurosciences.

[18]  C. Clarke Neuroprotection and pharmacotherapy for motor symptoms in Parkinson's disease , 2004, The Lancet Neurology.

[19]  P. Calabresi,et al.  Therapeutic doses of L-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism. , 2004, Brain : a journal of neurology.

[20]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[21]  Hui Zhang,et al.  Heterosynaptic Dopamine Neurotransmission Selects Sets of Corticostriatal Terminals , 2004, Neuron.

[22]  Karl J. Friston,et al.  Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning , 2004, Science.

[23]  E. Kandel,et al.  Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Goldman-Rakic,et al.  Selective D2 Receptor Actions on the Functional Circuitry of Working Memory , 2004, Science.

[25]  M. Petrides,et al.  Neural Bases of Set-Shifting Deficits in Parkinson's Disease , 2004, The Journal of Neuroscience.

[26]  K. Dujardin,et al.  Dysfunction of the human memory systems: role of the dopaminergic transmission , 2003, Current opinion in neurology.

[27]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[28]  D. Aarsland,et al.  Cognitive, psychiatric and motor response to galantamine in Parkinson's disease with dementia , 2003, International journal of geriatric psychiatry.

[29]  M. Tuszynski,et al.  Lesions of the Basal Forebrain Cholinergic System Impair Task Acquisition and Abolish Cortical Plasticity Associated with Motor Skill Learning , 2003, Neuron.

[30]  Y. Humeau,et al.  Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition , 2003, Nature Neuroscience.

[31]  Paul Greengard,et al.  Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia , 2003, Nature Neuroscience.

[32]  W. K. Cullen,et al.  Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty , 2003, Nature Neuroscience.

[33]  M. Emre Dementia associated with Parkinson's disease , 2003, The Lancet Neurology.

[34]  Stefano Puglisi-Allegra,et al.  Norepinephrine in the Prefrontal Cortex Is Critical for Amphetamine-Induced Reward and Mesoaccumbens Dopamine Release , 2003, The Journal of Neuroscience.

[35]  C G Ballard,et al.  Fluctuations in attention , 2002, Neurology.

[36]  A. Nordberg,et al.  Selective changes in the levels of nicotinic acetylcholine receptor protein and of corresponding mRNA species in the brains of patients with Parkinson’s disease , 2002, Brain Research.

[37]  M. Zoli,et al.  Identification of the Nicotinic Receptor Subtypes Expressed on Dopaminergic Terminals in the Rat Striatum , 2002, The Journal of Neuroscience.

[38]  E. Koechlin,et al.  Medial Prefrontal and Subcortical Mechanisms Underlying the Acquisition of Motor and Cognitive Action Sequences in Humans , 2002, Neuron.

[39]  D. Aarsland,et al.  Donepezil for cognitive impairment in Parkinson's disease: a randomised controlled study , 2002, Journal of neurology, neurosurgery, and psychiatry.

[40]  J. Partridge,et al.  Nicotinic Acetylcholine Receptors Interact with Dopamine in Induction of Striatal Long-Term Depression , 2002, The Journal of Neuroscience.

[41]  John A. Dani,et al.  Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum , 2001, Nature Neuroscience.

[42]  T. Robbins,et al.  Mechanisms of cognitive set flexibility in Parkinson's disease. , 2001, Brain : a journal of neurology.

[43]  T. Aosaki,et al.  Dopamine-Dependent Synaptic Plasticity in the Striatal Cholinergic Interneurons , 2001, The Journal of Neuroscience.

[44]  J. Nyengaard,et al.  Cellular Expression of α7 Nicotinic Acetylcholine Receptor Protein in the Temporal Cortex in Alzheimer's and Parkinson's Disease— A Stereological Approach , 2000, Neurobiology of Disease.

[45]  P. Greengard,et al.  Dopamine and cAMP-Regulated Phosphoprotein 32 kDa Controls Both Striatal Long-Term Depression and Long-Term Potentiation, Opposing Forms of Synaptic Plasticity , 2000, The Journal of Neuroscience.

[46]  Y. Smith,et al.  Anatomy of the dopamine system in the basal ganglia , 2000, Trends in Neurosciences.

[47]  S. Sealfon,et al.  Dopamine receptors: from structure to behavior , 2000, Trends in Neurosciences.

[48]  H. Mansvelder,et al.  Long-Term Potentiation of Excitatory Inputs to Brain Reward Areas by Nicotine , 2000, Neuron.

[49]  T Nagatsu,et al.  Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. , 2000, Science.

[50]  J. Kulisevsky,et al.  Chronic effects of dopaminergic replacement on cognitive function in Parkinson's disease: A two‐year follow‐up study of previously untreated patients , 2000, Movement disorders : official journal of the Movement Disorder Society.

[51]  R. Palmiter,et al.  Dopamine-Deficient Mice Are Hypersensitive to Dopamine Receptor Agonists , 2000, The Journal of Neuroscience.

[52]  P. Calabresi,et al.  Activation of D2-Like Dopamine Receptors Reduces Synaptic Inputs to Striatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[53]  I. Jones,et al.  Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. , 2000, European journal of pharmacology.

[54]  P. Goldman-Rakic,et al.  Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. , 2000, Science.

[55]  P. Calabresi,et al.  Acetylcholine-mediated modulation of striatal function , 2000, Trends in Neurosciences.

[56]  M. Davidson,et al.  Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys. , 2000, Journal of neurophysiology.

[57]  L. Thal,et al.  Cholinergic dysfunction in diseases with Lewy bodies , 2000, Neurology.

[58]  P. Calabresi,et al.  Unilateral dopamine denervation blocks corticostriatal LTP. , 1999, Journal of neurophysiology.

[59]  C. I. Connolly,et al.  Building neural representations of habits. , 1999, Science.

[60]  G. Di Chiara,et al.  Local application of SCH 39166 reversibly and dose-dependently decreases acetylcholine release in the rat striatum. , 1999, European journal of pharmacology.

[61]  Y. Agid,et al.  Acute and Long-Term Administration of Anticholinergics in Parkinson's Disease: Specific Effects on the Subcortico-Frontal Syndrome , 1999, Brain and Cognition.

[62]  E. Perry,et al.  Acetylcholine in mind: a neurotransmitter correlate of consciousness? , 1999, Trends in Neurosciences.

[63]  P. Calabresi,et al.  Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP , 1999, Neuropharmacology.

[64]  P. Calabresi,et al.  Blockade of M2‐like muscarinic receptors enhances long‐term potentiation at corticostriatal synapses , 1998 .

[65]  Y. Kawaguchi,et al.  Dopamine D1-Like Receptor Activation Excites Rat Striatal Large Aspiny Neurons In Vitro , 1998, The Journal of Neuroscience.

[66]  Trey Sunderland,et al.  Combined Nicotinic and Muscarinic Blockade in Elderly Normal Volunteers: Cognitive, Behavioral, and Physiologic Responses , 1998, Neuropsychopharmacology.

[67]  J. Growdon,et al.  Levodopa improves motor function without impairing cognition in mild non-demented Parkinson's disease patients , 1998, Neurology.

[68]  Leslie G. Ungerleider,et al.  An area specialized for spatial working memory in human frontal cortex. , 1998, Science.

[69]  J. Surmeier,et al.  D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. , 1997, Journal of neurophysiology.

[70]  P. Calabresi,et al.  The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia , 1996, Trends in Neurosciences.

[71]  Charles J. Wilson,et al.  Striatal interneurones: chemical, physiological and morphological characterization , 1995, Trends in Neurosciences.

[72]  Á. Pazos,et al.  Cholinergic markers in degenerative parkinsonism: autoradiographic demonstration of high-affinity choline uptake carrier hyperactivity , 1994, Brain Research.

[73]  S. L. Visser,et al.  Disturbed frontal regulation of attention in Parkinson's disease. , 1993, Brain : a journal of neurology.

[74]  J. Cummings,et al.  Frontal-subcortical circuits and human behavior. , 1993, Journal of psychosomatic research.

[75]  A. Cools,et al.  Impaired cognitive shifting in parkinsonian patients on anticholinergic therapy , 1993, Neuropsychologia.

[76]  C D Marsden,et al.  Altered Muscarinic and Nicotinic Receptor Densities in Cortical and Subcortical Brain Regions in Parkinson's Disease , 1993, Journal of neurochemistry.

[77]  H J Sagar,et al.  Different effects of dopaminergic and anticholinergic therapies on cognitive and motor function in Parkinson's disease. A follow-up study of untreated patients. , 1992, Brain : a journal of neurology.

[78]  P. Calabresi,et al.  Long-term synaptic depression in the striatum: physiological and pharmacological characterization , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  Päivi Marjamäki,et al.  A post-mortem study on striatal dopamine receptors in Parkinson's disease , 1991, Brain Research.

[80]  S. Carmichael,et al.  Reduced D2 dopamine and muscarinic cholinergic receptor densities in caudate specimens from fluctuating parkinsonian patients , 1991, Annals of neurology.

[81]  B. Bloch,et al.  Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. Rinne,et al.  A postmortem study of brain nicotinic receptors in Parkinson's and Alzheimer's disease , 1991, Brain Research.

[83]  W. Weiner,et al.  Visuospatial impairment in Parkinson's disease , 1991, Neurology.

[84]  B. Bloch,et al.  D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum , 1990, Neuroscience Letters.

[85]  Bruno Dubois,et al.  Cholinergic deficiency and frontal dysfunction in Parkinson's disease , 1990, Annals of neurology.

[86]  A. Graybiel Neurotransmitters and neuromodulators in the basal ganglia , 1990, Trends in Neurosciences.

[87]  R. Bertorelli,et al.  D1 and D2 Dopaminergic Regulation of Acetylcholine Release from Striata of Freely Moving Rats , 1990, Journal of neurochemistry.

[88]  P. Calabresi,et al.  Muscarine depolarizes rat substantia nigra zona compacta and ventral tegmental neurons in vitro through M1-like receptors. , 1990, The Journal of pharmacology and experimental therapeutics.

[89]  C. Marsden,et al.  Cognitive function in Parkinson's disease: From description to theory , 1990, Trends in Neurosciences.

[90]  P. Calabresi,et al.  Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording , 1989, British journal of pharmacology.

[91]  J. Bolam,et al.  Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat , 1988, The Journal of comparative neurology.

[92]  A M Graybiel,et al.  Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[93]  F Lhermitte,et al.  Cholinergic‐dependent cognitive deficits in Parkinson's disease , 1987, Annals of neurology.

[94]  E. Perry,et al.  Cholinergic correlates of cognitive impairment in Parkinson's disease: comparisons with Alzheimer's disease. , 1985, Journal of neurology, neurosurgery, and psychiatry.

[95]  I. Nakano,et al.  Parhnson’s Disease: Neuron Loss in the Nucleus Basah Without Concomitant Alzheimer’s Disease , 2004 .

[96]  Yves Agid,et al.  A subcortico-cortical cholinergic system is affected in Parkinson's disease , 1983, Brain Research.

[97]  Y. Agid,et al.  Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease , 1983, Brain Research.

[98]  J. Mortimer,et al.  Relationship of motor symptoms to intellectual deficits in Parkinson disease , 1982, Neurology.

[99]  R. Spehlmann,et al.  DOPAMINE ACETYLCHOLINE IMBALANCE IN PARKINSON'S DISEASE Possible Regenerative Overgrowth of Cholinergic Axon Terminals , 1976, The Lancet.

[100]  J. Parkinson AN ESSAY ON THE SHAKING PALSY , 1969 .

[101]  Martin Sarter,et al.  Choline transporters, cholinergic transmission and cognition , 2005, Nature Reviews Neuroscience.

[102]  D Wyper,et al.  Nicotinic Acetylcholine Receptor Distribution in Alzheimer's Disease, Dementia with Lewy Bodies, Parkinson's Disease, and Vascular Dementia: In Vitro Binding Study Using 5-[125I]-A-85380 , 2004, Neuropsychopharmacology.

[103]  Alcino J. Silva,et al.  Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice , 2003, Nature Neuroscience.