Nonatomic total rewards Markov decision processes with multiple criteria

[1]  P. WHITTLE,et al.  Markov Processes and Their Applications , 1962, Nature.

[2]  J. Neveu,et al.  Mathematical foundations of the calculus of probability , 1965 .

[3]  P. Meyer Probability and potentials , 1966 .

[4]  E. Frid On Optimal Strategies in Control Problems with Constraints , 1972 .

[5]  Daniel H. Wagner Survey of Measurable Selection Theorems , 1977 .

[6]  Leon H. Herbach,et al.  Mathematical Basis of Statistics , 1982 .

[7]  Rolf van Dawen,et al.  Negative Dynamic Programming , 1984 .

[8]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[9]  M. K rn,et al.  Stochastic Optimal Control , 1988 .

[10]  E. Balder On compactness of the space of policies in stochastic dynamic programming , 1989 .

[11]  Eugene A. Feinberg,et al.  Constrained Markov Decision Models with Weighted Discounted Rewards , 1995, Math. Oper. Res..

[12]  Eugene A. Feinberg,et al.  On measurability and representation of strategic measures in Markov decision processes , 1996 .

[13]  A. Piunovskiy Optimal Control of Random Sequences in Problems with Constraints , 1997 .

[14]  E. Altman Constrained Markov Decision Processes , 1999 .

[15]  O. Hernández-Lerma,et al.  Further topics on discrete-time Markov control processes , 1999 .

[16]  E. Feinberg,et al.  Multiple Objective Nonatomic Markov Decision Processes with Total Reward Criteria , 2000 .

[17]  Onésimo Hernández-Lerma,et al.  Constrained Markov control processes in Borel spaces: the discounted case , 2000, Math. Methods Oper. Res..