Cazacu and Barlat Criterion Identification Using the Cylindrical Cup Deep Drawing Test and the Coupled Artificial Neural Networks – Genetic Algorithm Method

This paper deals with the identification of the anisotropic parameters using an inverse strategy. In the classical inverse methods, the inverse analysis is generally coupled with a finite element code, which leads to a long computational time. In this work an inverse analysis strategy coupled with an artificial neural network (ANN) model is proposed. This method has the advantage of being faster than the classical one. To test and validate the proposed approach an experimental cylindrical cup deep drawing test is used in order to identify the orthotropic material behaviour. The ANN model is trained by finite element simulations of this experimental test. To reduce the gap between the experimental responses and the numerical ones, the proposed method is coupled with an optimization procedure based on the genetic algorithm (GA) to identify the Cazacu and Barlat’2001 material parameters of a standard mild steel DC06.