Improved and robust monitoring in statistical process control

Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

[1]  Ulrich Menzefricke,et al.  Control Charts for the Generalized Variance Based on Its Predictive Distribution , 2007 .

[2]  Angela Montanari,et al.  Gini’s contribution to Multivariate Statistical Analysis , 2005 .

[3]  Douglas C. Montgomery,et al.  Using Control Charts to Monitor Process and Product Quality Profiles , 2004 .

[4]  Benjamin M. Adams,et al.  Alternative Designs of the Hodges-Lehmann Control Chart , 1996 .

[5]  Egon S. Pearson,et al.  THE PERCENTAGE LIMITS FOR THE DISTRIBUTION OF RANGE IN SAMPLES FROM A NORMAL POPULATION. (n ≤ 100.) , 1932 .

[6]  Douglas C. Montgomery,et al.  Research Issues and Ideas in Statistical Process Control , 1999 .

[7]  B. Kiregyera Regression-type estimators using two auxiliary variables and the model of double sampling from finite populations , 1984 .

[8]  Ronald J. M. M. Does,et al.  A Semi-Bayesian Method for Shewhart Individual Control Charts , 2006 .

[9]  Harrison M. Wadsworth,et al.  Modern methods for quality control and improvement , 1986 .

[10]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[11]  Kwok-Leung Tsui,et al.  Effects of estimation errors on cause-selecting charts , 2005 .

[12]  M. F. Ramalhoto,et al.  Shewhart control charts for the scale parameter of a Weibull control variable with fixed and variable sampling intervals , 1999 .

[13]  CESAR A. Acosta-Mejia,et al.  A comparison of control charting procedures for monitoring process dispersion , 1999 .

[14]  H. A. David Early sample measures of variability , 1998 .

[15]  A. Goel,et al.  Determination of A.R.L. and a Contour Nomogram for Cusum Charts to Control Normal Mean , 1971 .

[16]  Ronald J. M. M. Does,et al.  Statistical process control in industry , 1998 .

[17]  S. Ahmad,et al.  Use of Probability Weighted Moments in the Analysis of Means , 1993 .

[18]  Peter R. Nelson,et al.  Power Curves for the Analysis of Means , 1985 .

[19]  Stephen A. Freitas,et al.  Modern Industrial Statistics: Design and Control of Quality and Reliability , 1999, Technometrics.

[20]  Zachary G. Stoumbos,et al.  Robustness to Non-Normality of the Multivariate EWMA Control Chart , 2002 .

[21]  Michael B. C. Khoo,et al.  Alternatives to the Multivariate Control Chart for Process Dispersion , 2004 .

[22]  Muhammad Riaz,et al.  Monitoring Process Variability Using Gini’s Mean Difference , 2007 .

[23]  Shlomo Yitzhaki,et al.  Gini’s Mean difference: a superior measure of variability for non-normal distributions , 2003 .

[24]  L. Chand Some ratio-type estimators based on two or more auxiliary variables , 1975 .

[25]  Anthony Y. C. Kuk,et al.  Median Estimation in the Presence of Auxiliary Information , 1989 .

[26]  Arthur B. Yeh,et al.  A multivariate exponentially weighted moving average control chart for monitoring process variability , 2003 .

[27]  Stelios Psarakis,et al.  An Examination of the Robustness to Non Normality of the EWMA Control Charts for the Dispersion , 2005 .

[28]  Charles W. Champ,et al.  The Run Length Distribution of the CUSUM with Estimated Parameters , 2004 .

[29]  Z. A. Lomnicki The Standard Error of Gini's Mean Difference , 1952 .

[30]  R. Muhammad,et al.  Gini's Mean Difference Based Time-Varying EWMA Charts , 2009 .

[31]  H. Hotelling,et al.  Multivariate Quality Control , 1947 .

[32]  Marion R. Reynolds,et al.  EWMA control charts with variable sample sizes and variable sampling intervals , 2001 .

[33]  E. S. Pearson Biometrika tables for statisticians , 1967 .

[34]  Rahul Mukerjee,et al.  Regression type estimators using multiple auxiliary information , 1987 .

[35]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[36]  L. K. Chan,et al.  Robustness of mean E(X) and R charts , 1988 .

[37]  Enrique del Castillo,et al.  SPC Methods for Quality Improvement , 1999, Technometrics.

[38]  B. J. Mandel The Regression Control Chart , 1969 .

[39]  M. S. Ahmed,et al.  Theory and Methods: A Note on Regression‐Type Estimators Using Multiple Auxiliary Information , 1998 .

[40]  B. Prasad,et al.  Some improved ratio type estimators of population mean and ratio in finite population sample surveys , 1989 .

[41]  G. B. Wetherill,et al.  A Simplified Scheme for the Economic Design of X̄-Charts , 1974 .

[42]  J. Magnus,et al.  Estimation of the Mean of a Univariate Normal Distribution with Known Variance , 2002 .

[43]  M. Rueda Garcia,et al.  Repeated substitution method: The ratio estimator for the population variance , 1996 .

[44]  V. D. Naik,et al.  A general class of estimators for estimating population mean using auxiliary information , 1991 .

[45]  H. J. Huang,et al.  A synthetic control chart for monitoring process dispersion with sample standard deviation , 2005, Comput. Ind. Eng..

[46]  I. Olkin,et al.  Sampling theory of surveys, with applications , 1955 .

[47]  Arthur B. Yeh,et al.  Multivariate Control Charts for Monitoring Covariance Matrix: A Review , 2006 .

[48]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[49]  Douglas M. Hawkins,et al.  Regression Adjustment for Variables in Multivariate Quality Control , 1993 .

[50]  G. B. Wetherill,et al.  A Simplified Scheme for the Economic Design of X-Bar Charts , 1974 .

[51]  Layth C. Alwan Statistical Process Analysis , 1999 .

[52]  Eamonn Mullins,et al.  STATISTICAL QUALITY CONTROL AND IMPROVEMENT , 1996 .

[53]  Fah Fatt Gan,et al.  Shewhart Charts for Monitoring the Variance Components , 2004 .

[54]  Steven A. Yourstone,et al.  Non‐Normality and the Design of Control Charts for Averages* , 1992 .

[55]  Muhammad Riaz,et al.  A process variability control chart , 2009, Comput. Stat..

[56]  R. Royall,et al.  An Empirical Study of the Ratio Estimator and Estimators of its Variance , 1981 .

[57]  M. Riaz On Improved Monitoring of Process Variability , 2007 .

[58]  Roger G. Schroeder,et al.  A Simultaneous Control Chart , 1987 .

[59]  Seven Knoth,et al.  Fast initial response features for EWMA control charts , 2005 .

[60]  F. Aparisi,et al.  GENERALIZED VARIANCE CHART DESIGN WITH ADAPTIVE SAMPLE SIZES. THE BIVARIATE CASE , 2001 .

[61]  Myoung-Jin Kim,et al.  Number of Replications Required in Control Chart Monte Carlo Simulation Studies , 2007, Commun. Stat. Simul. Comput..

[62]  Lloyd S. Nelson,et al.  Column: Technical Aids: The Shewhart Control Chart--Tests for Special Causes , 1984 .

[63]  E. Viles,et al.  Design of R control Chart Assuming a Gamma Distribution , 2001 .

[64]  W. Woodall,et al.  Multivariate CUSUM Quality- Control Procedures , 1985 .

[65]  B. D. Tikkiwal On the Theory of Classical Regression and Double Sampling Estimation , 1960 .

[66]  Ingram Olkin,et al.  Gini Regression Analysis , 1992 .

[67]  Muhammad Riaz,et al.  A mean deviation-based approach to monitor process variability , 2009 .

[68]  Frederick S. Hillier,et al.  X-Bar- and R-Chart Control Limits Based on A Small Number of Subgroups , 1969 .

[69]  Douglas M. Hawkins,et al.  Self-Starting Multivariate Exponentially Weighted Moving Average Control Charting , 2007, Technometrics.

[70]  Wilbert C.M. Kallenberg,et al.  Self-adapting control charts , 2004 .

[71]  Ingram Olkin,et al.  MULTIVARIATE RATIO ESTIMATION FOR FINITE POPULATIONS , 1958 .

[72]  Benjamin M. Adams,et al.  Advanced Topics in Statistical Process Control : The Power of Shewhart's Charts , 1995 .

[73]  Frederick S. Hillier,et al.  Mean and Variance Control Chart Limits Based on a Small Number of Subgroups , 1970 .

[74]  Sheldon M. Ross,et al.  A Course in Simulation , 1990 .

[75]  J. Edward Jackson,et al.  Quality Control Methods for Several Related Variables , 1959 .

[76]  U. S. Nair,et al.  THE STANDARD ERROR OF GINI'S MEAN DIFFERENCE , 1936 .

[77]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[78]  Mrudulla Gnanadesikan,et al.  A Selection Procedure for Multivariate Normal Distributions in Terms of the Generalized Variances , 1970 .

[79]  Govind S. Mudholkar,et al.  Generalized Multivariate Estimator for the Mean of Finite Populations , 1967 .

[80]  S. J. Wierda Multivariate statistical process control—recent results and directions for future research , 1994 .

[81]  Muhammad Riaz,et al.  Probability Weighted Moments Approach to Quality Control Charts , 2006 .

[82]  K. E. Case,et al.  Development and Evaluation of Control Charts Using Exponentially Weighted Moving Averages , 1989 .

[83]  Muhammad Riaz,et al.  Monitoring process variability using auxiliary information , 2008, Comput. Stat..

[84]  Matoteng M. Ncube,et al.  A Comparison of dispersion quality control charts , 1987 .

[85]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[86]  Muhammad Riaz,et al.  A Dispersion Control Chart , 2008, Commun. Stat. Simul. Comput..

[87]  Edna Schechtman,et al.  A Measure of Association Based on Gini's Mean Difference , 1987 .

[88]  F. Aparisi,et al.  Statistical properties of the lsi multivariate control chart , 1999 .

[89]  C. T. Isaki,et al.  Variance Estimation Using Auxiliary Information , 1983 .

[90]  R. Singh,et al.  Elements of Survey Sampling , 1996 .

[91]  Stefan H. Steiner Exponentially Weighted Moving Average Control Charts with Time-Varying Control Limits and Fast Initial Response , 1998 .

[92]  Glenn J. Battaglia Regression-Based Statistical Process Control , 1996 .

[93]  The L-Chart for Non-Normal Processes , 2005 .

[94]  Kwok-Leung Tsui,et al.  Run-Length Performance of Regression Control Charts with Estimated Parameters , 2004 .

[95]  David M. Rocke Robust control charts , 1989 .

[96]  M.B.C. Khoo Some control charts for the process mean and variance based on Downton's estimator , 2004, 2004 IEEE International Engineering Management Conference (IEEE Cat. No.04CH37574).

[97]  A few remarks on the estimation of some variability measures , 2008 .

[98]  Muhammad Riaz,et al.  An Alternative to the Bivariate Control Chart for Process Dispersion , 2008 .

[99]  William H. Beyer,et al.  Handbook of Tables for Probability and Statistics , 1967 .

[100]  William H. Woodall,et al.  A review and analysis of cause-selecting control charts , 1993 .

[101]  Peter R. Nelson,et al.  The Effect of Non-Normality on the Control Limits of X-Bar Charts , 1976 .

[102]  D. Hawkins Multivariate quality control based on regression-adjusted variables , 1991 .

[103]  W. K. Chiu,et al.  The Economic Design of Cusum Charts for Controlling Normal Means , 1974 .

[104]  H. A. David Gini's Mean Difference Rediscovered , 1968 .

[105]  Gemai Chen,et al.  An Extended EWMA Mean Chart , 2005 .

[106]  Naurang Singh Mangat,et al.  Ratio and Product Methods of Estimation , 1996 .

[107]  F. Mosteller On Some Useful "Inefficient" Statistics , 1946 .

[108]  Lawrence G. Tatum Robust estimation of the process standard deviation for control charts , 1997 .

[109]  Ronald J. M. M. Does,et al.  Variables control chart limits and tests for special causes , 1992 .

[110]  S. W. Roberts Control chart tests based on geometric moving averages , 2000 .

[111]  David He,et al.  Joint statistical design of double sampling X and s charts , 2006, Eur. J. Oper. Res..

[112]  Yu Ding,et al.  A comparison of process variation estimators for in-process dimensional measurements and control , 2005 .

[113]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[114]  Muhammad Riaz,et al.  Monitoring process mean level using auxiliary information , 2008 .

[115]  Douglas C. Montgomery,et al.  A review of multivariate control charts , 1995 .

[116]  Des Raj,et al.  On a Method of Using Multi-Auxiliary Information in Sample Surveys , 1965 .