Families of convex sets not representable by points

Note: Professor Pach's number: [220]; Accepted; Reference DCG-CHAPTER-2008-042 Record created on 2008-11-19, modified on 2017-05-12

[1]  Jj Anos Pach Erd} Os-szekeres-type Theorems for Segments and Non-crossing Convex Sets , 1998 .

[2]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[3]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[4]  R. Pollack,et al.  Advances in Discrete and Computational Geometry , 1999 .

[5]  Peter W. Shor,et al.  Stretchability of Pseudolines is NP-Hard , 1990, Applied Geometry And Discrete Mathematics.

[6]  János Pach,et al.  Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets , 2000 .

[7]  R. Pollack,et al.  Arrangements and Topological Planes , 1994 .

[8]  Richard Pollack,et al.  Proof of Grünbaum's Conjecture on the Stretchability of Certain Arrangements of Pseudolines , 1980, J. Comb. Theory, Ser. A.

[9]  Esther E. Klein,et al.  On some extremum problems in elementary geometry , 2006 .

[10]  Tibor Bisztriczky,et al.  Convexly independent sets , 1990, Comb..

[11]  E. L. The Foundations of Geometry , 1891, Nature.

[12]  T. Bisztriczky,et al.  A generalization of the Erdös-Szekeres convex n-gon theorem. , 1989 .

[13]  Richard Pollack,et al.  Semispaces of Configurations, Cell Complexes of Arrangements , 1984, J. Comb. Theory, Ser. A.

[14]  R. Pollack,et al.  Allowable Sequences and Order Types in Discrete and Computational Geometry , 1993 .

[15]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[16]  Jacob E. Goodman,et al.  Proof of a conjecture of Burr, Grünbaum, and Sloane , 1980, Discret. Math..

[17]  János Pach,et al.  A Generalization of the Erdos - Szekeres Theorem to Disjoint Convex Sets , 1998, Discret. Comput. Geom..