Clickthrough Log Analysis by Collaborative Ranking

Analyzing clickthrough log data is important for improving search performance as well as understanding user behaviors. In this paper, we propose a novel collaborative ranking model to tackle two difficulties in analyzing clickthrough log. First, previous studies have shown that users tend to click top-ranked results even they are less relevant. Therefore, we use pairwise ranking relation to avoid the position bias in clicks. Second, since click data are extremely sparse with respect to each query or user, we construct a collaboration model to eliminate the sparseness problem. We also find that the proposed model and previous popular used click-based models address different aspects of clickthrough log data. We further propose a hybrid model that can achieve significant improvement compared to the baselines on a large-scale real world dataset.

[1]  Nick Craswell,et al.  Random walks on the click graph , 2007, SIGIR.

[2]  Xuehua Shen,et al.  Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.

[3]  Qiang Yang,et al.  EigenRank: a ranking-oriented approach to collaborative filtering , 2008, SIGIR '08.

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  Alexander J. Smola,et al.  Maximum Margin Matrix Factorization for Collaborative Ranking , 2007 .

[6]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[7]  Thorsten Joachims,et al.  Evaluating Retrieval Performance Using Clickthrough Data , 2003, Text Mining.

[8]  Stephen E. Robertson,et al.  SoftRank: optimizing non-smooth rank metrics , 2008, WSDM '08.

[9]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[10]  Filip Radlinski,et al.  Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search , 2007, TOIS.

[11]  Thorsten Joachims,et al.  Accurately Interpreting Clickthrough Data as Implicit Feedback , 2017 .

[12]  Tie-Yan Liu,et al.  Learning to rank for information retrieval (LR4IR 2007) , 2007, SIGF.

[13]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[14]  Hang Li,et al.  AdaRank: a boosting algorithm for information retrieval , 2007, SIGIR.

[15]  Wei-Ying Ma,et al.  Optimizing web search using web click-through data , 2004, CIKM '04.

[16]  Susan T. Dumais,et al.  Improving Web Search Ranking by Incorporating User Behavior Information , 2019, SIGIR Forum.

[17]  Tie-Yan Liu,et al.  Directly optimizing evaluation measures in learning to rank , 2008, SIGIR.

[18]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[19]  Filip Radlinski,et al.  Query chains: learning to rank from implicit feedback , 2005, KDD '05.

[20]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.