Mechanisms of Conformational Change for a Replicative Hexameric Helicase of SV40 Large Tumor Antigen

[1]  C. Richardson,et al.  The arginine finger of bacteriophage T7 gene 4 helicase: role in energy coupling. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Joachim Frank,et al.  Large T antigen on the simian virus 40 origin of replication: a 3D snapshot prior to DNA replication , 2003, The EMBO journal.

[3]  Smita S. Patel,et al.  ATP Binding Modulates the Nucleic Acid Affinity of Hepatitis C Virus Helicase* , 2003, Journal of Biological Chemistry.

[4]  J. Decaprio,et al.  Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen , 2003, Nature.

[5]  Craig M. Ogata,et al.  The structure and function of MCM from archaeal M. Thermoautotrophicum , 2003, Nature Structural Biology.

[6]  J. Pipas,et al.  T Antigens of Simian Virus 40: Molecular Chaperones for Viral Replication and Tumorigenesis , 2002, Microbiology and Molecular Biology Reviews.

[7]  A. Wilkinson,et al.  AAA+ superfamily ATPases: common structure–diverse function , 2001, Genes to cells : devoted to molecular & cellular mechanisms.

[8]  A. Leslie,et al.  The structure and nucleotide occupancy of bovine mitochondrial F1‐ATPase are not influenced by crystallisation at high concentrations of nucleotide , 2001, FEBS letters.

[9]  Michael R Sawaya,et al.  Crystal Structure of T7 Gene 4 Ring Helicase Indicates a Mechanism for Sequential Hydrolysis of Nucleotides , 2000, Cell.

[10]  B. Stillman,et al.  A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  G A Petsko,et al.  Chemistry and biology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Simmons,et al.  SV40 large T antigen functions in DNA replication and transformation. , 2000, Advances in virus research.

[13]  Z. Kelman,et al.  The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[15]  Charles C. Richardson,et al.  Crystal Structure of the Helicase Domain from the Replicative Helicase-Primase of Bacteriophage T7 , 1999, Cell.

[16]  D. Kim,et al.  Transcription Termination Factor Rho Contains Three Noncatalytic Nucleotide Binding Sites* , 1999, The Journal of Biological Chemistry.

[17]  J. Abrahams,et al.  The structure of bovine mitochondrial F1-ATPase: an example of rotary catalysis. , 1999, Biochemical Society transactions.

[18]  E V Koonin,et al.  AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. , 1999, Genome research.

[19]  J. Borowiec,et al.  Synthetic DNA Replication Bubbles Bound and Unwound with Twofold Symmetry by a Simian Virus 40 T-Antigen Double Hexamer , 1998, Journal of Virology.

[20]  K. Weißhart,et al.  Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues. , 1998, Biochemistry.

[21]  Yiming Xu,et al.  Sequential Hydrolysis of ATP Molecules Bound in Interacting Catalytic Sites of Escherichia coli Transcription Termination Protein Rho* , 1998, The Journal of Biological Chemistry.

[22]  A. Wittinghofer Signal transduction via Ras. , 1998, Biological chemistry.

[23]  W. Taylor,et al.  Support for shared ancestry of GAPs , 1998, Nature.

[24]  S R Sprang,et al.  Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. , 1997, Science.

[25]  W. Kabsch,et al.  The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. , 1997, Science.

[26]  M. Hingorani,et al.  The dTTPase mechanism of T7 DNA helicase resembles the binding change mechanism of the F1-ATPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  P. Silver,et al.  DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. , 1997, Genes & development.

[28]  P. Bullock The initiation of simian virus 40 DNA replication in vitro. , 1997, Critical reviews in biochemistry and molecular biology.

[29]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[30]  D. Herschlag,et al.  Ras-catalyzed hydrolysis of GTP: a new perspective from model studies. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H M Holden,et al.  X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. , 1995, Biochemistry.

[32]  B. Stillman,et al.  Identification of eukaryotic DNA replication proteins using simian virus 40 in vitro replication system. , 1995, Methods in enzymology.

[33]  Bruce Stillman,et al.  Smart machines at the DNA replication fork , 1994, Cell.

[34]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[35]  B. Stillman,et al.  Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro , 1994, Nature.

[36]  J. Walker The regulation of catalysis in ATP synthase. , 1994, Current opinion in structural biology.

[37]  J. Schweizer,et al.  Simian virus 40 T-antigen DNA helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replication , 1992, Journal of virology.

[38]  E. Fanning,et al.  Structure and function of simian virus 40 large tumor antigen. , 1992, Annual review of biochemistry.

[39]  J. Hurwitz,et al.  Initiation of simian virus 40 DNA synthesis in vitro , 1991, Molecular and cellular biology.

[40]  F. Dean,et al.  Differential induction of structural changes in the simian virus 40 origin of replication by T antigen , 1991, Journal of virology.

[41]  B. Stillman,et al.  Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. , 1991, The Journal of biological chemistry.

[42]  F. Dean,et al.  Binding and unwinding—How T antigen engages the SV40 origin of DNA replication , 1990, Cell.

[43]  E. Fanning,et al.  Expression of simian virus 40 T antigen in Escherichia coli: localization of T-antigen origin DNA-binding domain to within 129 amino acids , 1988, Journal of virology.

[44]  F. Dean,et al.  Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[45]  F. Dean,et al.  Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[46]  B. Stillman,et al.  T antigen and template requirements for SV40 DNA replication in vitro. , 1985, The EMBO journal.

[47]  B. Stillman,et al.  Replication and supercoiling of simian virus 40 DNA in cell extracts from human cells , 1985, Molecular and cellular biology.