Growth Rate Of Dehn Twist Lattice Points In Teichm\"{u}ller Space
暂无分享,去创建一个
[1] Joseph Maher. Asymptotics for Pseudo-Anosov Elements in Teichmüller Lattices , 2009, 0901.2679.
[2] G. Arzhantseva,et al. Growth tight actions , 2014, 1401.0499.
[3] E. Primrose,et al. Subgroups of Teichmuller Modular Groups , 1992 .
[4] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .
[5] H. Huber. Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. I. , 1956 .
[6] Kasra Rafi,et al. Comparison between Teichmüller and Lipschitz metrics , 2005, math/0510136.
[7] Benson Farb,et al. A primer on mapping class groups , 2013 .
[8] Alexander Lubotzky,et al. Abelian and solvable subgroups of the mapping class groups , 1983 .
[9] Jouni Parkkonen,et al. On the hyperbolic orbital counting problem in conjugacy classes , 2013, 1312.1893.
[10] Steven P. Kerckho,et al. The Nielsen realization problem , 1983 .
[11] J. Harer,et al. Combinatorics of Train Tracks. , 1991 .
[12] D. Mumford. A remark on Mahler’s compactness theorem , 1971 .
[13] Lattice Point Asymptotics and Volume Growth on Teichmuller space. , 2006, math/0610715.
[14] Kasra Rafi,et al. Bounded combinatorics and the Lipschitz metric on Teichmüller space , 2010, 1011.6078.
[15] D. Dumas. Skinning maps are finite-to-one , 2012, 1203.0273.
[16] Stephen P. Humphries. Generators for the mapping class group , 1979 .
[17] Maryam Mirzakhani,et al. Growth of the number of simple closed geodesics on hyperbolic surfaces , 2008 .