Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators.

We demonstrate locking of an on-chip, high-Q toroidal-cavity to a pump laser using two, distinct methods: coupled power stabilization and wavelength locking of pump laser to the microcavity. In addition to improvements in operation of previously demonstrated micro-Raman and micro-OPO lasers, these techniques have enabled observation of a continuous, cascaded nonlinear process in which photons generated by optical parametric oscillations (OPO) function as a pump for Raman lasing. Dynamical behavior of the feedback control systems is also shown including the interplay between the control loop and the thermal nonlinearity. The demonstrated stabilization loop is essential for studying generation of nonclassical states using a microcavity optical parametric oscillator.

[1]  Childs,et al.  Microlaser: A laser with one atom in an optical resonator. , 1994, Physical review letters.

[2]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[3]  Gary C. Bjorklund,et al.  Frequency modulation (FM) spectroscopy , 1983 .

[4]  J. Knight,et al.  Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. , 1997, Optics letters.

[5]  J. Raimond,et al.  Very low threshold whispering-gallery-mode microsphere laser. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  A. Ferguson,et al.  Efficient generation of picosecond pulses at 243 nm , 1990 .

[7]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[8]  X S Yao,et al.  Microtorus: a high-finesse microcavity with whispering-gallery modes. , 2001, Optics letters.

[9]  Kerry J. Vahala,et al.  Fiber-coupled erbium microlasers on a chip , 2003 .

[10]  K. Vahala,et al.  Ultralow-threshold microcavity Raman laser on a microelectronic chip. , 2004, Optics letters.

[11]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[12]  Vladimir S. Ilchenko,et al.  Quality-factor and nonlinear properties of optical Whispering-Gallery modes , 1989 .

[13]  Joshua R. Smith,et al.  LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.

[14]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[15]  Vladimir S. Ilchenko,et al.  CAVITY QED WITH HIGH-Q WHISPERING GALLERY MODES , 1998 .

[16]  M. Gubin,et al.  High Sensitive Detection of Trace Gases Using Optical Heterodyne Method with a High Finesse Intra-Cavity Resonator , 1996 .

[17]  B. Yurke,et al.  Squeezed-light-enhanced polarization interferometer. , 1987, Physical review letters.

[18]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[19]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[20]  Michael L. Gorodetsky,et al.  Fundamental thermal fluctuations in microspheres , 2004 .

[21]  Lin,et al.  Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets. , 1991, Physical review letters.

[22]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[23]  D. Weiss,et al.  Quantized atom-field force at the surface of a microsphere. , 1994, Optics letters.

[24]  M. L. Gorodetskii,et al.  Thermal Nonlinear Effects in Optical Whispering Gallery Microresonators , 1992 .

[25]  R. Pound,et al.  Electronic frequency stabilization of microwave oscillators. , 1946, The Review of scientific instruments.