HIGH-PERFORMANCE PCG SOLVERS FOR FEM STRUCTURAL ANALYSIS

The preconditioned conjugate gradient algorithm is a well-known and powerful method used to solve large sparse symmetric positive definite linear systems Such system are generated by the finite element discretisation in structural analysis but users of finite elements in this contest generally still rely on direct methods It is our purpose in the present work to highlight the improvement brought forward by some new preconditioning techniques and show that the preconditioned conjugate gradient method performs better than efficient direct methods.

[1]  R. Beauwens Factorization iterative methods,M-operators andH-operators , 1978 .

[2]  G. Meinardus,et al.  Über eine Verallgemeinerung einer Ungleichung von L. V. Kantorowitsch , 1963 .

[3]  A. A. Lindsey How To Report It , 1973 .

[4]  S. Eisenstat Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods , 1981 .

[5]  O. Axelsson A generalized SSOR method , 1972 .

[6]  I. Gustafsson A class of first order factorization methods , 1978 .

[7]  P. Forsyth,et al.  Preconditioned conjugate gradient methods for three-dimensional linear elasticity , 1994 .

[8]  S. Sloan An algorithm for profile and wavefront reduction of sparse matrices , 1986 .

[9]  E. L. Poole,et al.  high-performance equation solvers and their impact on finite element analysis , 1992 .

[10]  Yvan Notay,et al.  DRIC: A dynamic version of the RIC method , 1994, Numer. Linear Algebra Appl..

[11]  R. Beauwens,et al.  Conditioning analysis of positive definite matrices by approximate factorizations , 1989 .

[12]  Owe Axelsson,et al.  Diagonally compensated reduction and related preconditioning methods , 1994, Numer. Linear Algebra Appl..

[13]  Robert Piessens,et al.  The evaluation and application of some modified moments , 1973 .

[14]  Owe Axelsson,et al.  Iterative methods for the solution of the Naviers equations of elasticity , 1977 .

[15]  Yvan Notay,et al.  Ordering Methods for Approximate Factorization Preconditioning , 1993 .

[16]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[17]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[18]  O. Axelsson Iterative solution methods , 1995 .

[19]  Mardochée Magolu monga Made Taking Advantage of the Potentialities of Dynamically Modified Block Incomplete Factorizations , 1998, SIAM J. Sci. Comput..

[20]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[21]  Robert Beauwens,et al.  Résolution itérative de systèmes linéaires par factorisations approchées , 1991 .

[22]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[23]  I. Duff,et al.  The effect of ordering on preconditioned conjugate gradients , 1989 .

[24]  B. M. Fulk MATH , 1992 .

[25]  R. Beauwens Modified incomplete factorization strategies , 1991 .