A two phase approach based on skeleton convergence and geometric variables for topology optimization using genetic algorithm

This paper introduces a set of skeleton operators for characterizing topologies evolving in a bit-array represented structural topology optimization problem. It is shown that the design generally converges to a stable skeleton fairly early in the optimization process. It is observed that further optimization is more about finding optimal gross shape for the various branches of the converged skeleton and the bit-array representation is not appropriate. A two-phase approach to topology optimization is proposed in which the first phase, where bit-array is used to represent the topology, ends with the detection of stabilization of skeleton, and the second phase proceeds further with the geometry based representation that directly addresses gross variation in shape of the branches of the converged skeleton. Genetic Algorithm has been used for optimization in both the phases. The efficiency and effectiveness of the use of skeleton operators and geometric variables for identification of convergence in the first phase and optimization in the second phase respectively is demonstrated.

[1]  T. Pavlidis A thinning algorithm for discrete binary images , 1980 .

[2]  T. Pavlidis Algorithms for Graphics and Image Processing , 1981, Springer Berlin Heidelberg.

[3]  Theo Pavlidis,et al.  Algorithms for Graphics and Imag , 1983 .

[4]  Gabriella Sanniti di Baja,et al.  A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[7]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[8]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[9]  N. Kikuchi,et al.  Integrated topology and shape optimization in structural design , 1991 .

[10]  E. Douglas Jensen,et al.  Topological Structural Design using Genetic Algorithms , 1992 .

[11]  M. Zhou,et al.  Generalized shape optimization without homogenization , 1992 .

[12]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[13]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[14]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[15]  G. Buttazzo,et al.  An optimal design problem with perimeter penalization , 1993 .

[16]  Patrick D. Surry,et al.  Fitness Variance of Formae and Performance Prediction , 1994, FOGA.

[17]  Colin Donald Chapman Structural topology optimization via the genetic algorithm , 1994 .

[18]  D. West Introduction to Graph Theory , 1995 .

[19]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[20]  C. S. Jog,et al.  A new approach to variable-topology shape design using a constraint on perimeter , 1996 .

[21]  Jacques Periaux,et al.  Genetic Algorithms in Engineering and Computer Science , 1996 .

[22]  C. S. Jog,et al.  Stability of finite element models for distributed-parameter optimization and topology design , 1996 .

[23]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[24]  Ali Kaveh,et al.  Optimal Structural Analysis , 1997 .

[25]  Kalyanmoy Deb,et al.  Sensor network design of linear processes using genetic algorithms , 1998 .

[26]  A. Globus,et al.  Automatic molecular design using evolutionary techniques , 1999 .

[27]  Kang Tai,et al.  Design of structures and compliant mechanisms by evolutionary optimization of morphological representations of topology , 2000 .

[28]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[29]  M. Jakiela,et al.  Continuum structural topology design with genetic algorithms , 2000 .

[30]  Ernest Hinton,et al.  Topology optimization of plate structures using a single- or three-layered artificial material model , 2001 .

[31]  J. E. Akin,et al.  Enhancing structural topology optimization , 2001 .

[32]  Akira Oyama,et al.  Real-coded adaptive range genetic algorithm applied to transonic wing optimization , 2000, Appl. Soft Comput..

[33]  E. Hinton,et al.  Comparisons between algorithms for structural topology optimization using a series of benchmark studies , 2001 .

[34]  G. Rozvany Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics , 2001 .

[35]  G. Allaire,et al.  On some recent advances in shape optimization , 2001 .

[36]  George I. N. Rozvany,et al.  On the validity of ESO type methods in topology optimization , 2001 .

[37]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[38]  Christian Igel,et al.  Effects of phenotypic redundancy in structure optimization , 2002, IEEE Trans. Evol. Comput..

[39]  I. A. Azid,et al.  A GA‐based technique for layout optimization of truss with stress and displacement constraints , 2002 .

[40]  Ali Kaveh,et al.  Topology optimization of trusses using genetic algorithm, force method and graph theory , 2003 .

[41]  Michèle Sebag,et al.  Compact Unstructured Representations for Evolutionary Design , 2002, Applied Intelligence.

[42]  Majumder Dtuta,et al.  Digital Image Processing and Analysis , 2004 .

[43]  K. Tai,et al.  Graph representation for structural topology optimization using genetic algorithms , 2004 .

[44]  Olivier L. de Weck,et al.  Variable Chromosome Length Genetic Algorithm for Structural Topology Design Optimization , 2004 .

[45]  K. Tai,et al.  Structural topology design optimization using Genetic Algorithms with a bit-array representation , 2005 .

[46]  K. Tai,et al.  Bar‐system representation for topology optimization using genetic algorithms , 2005 .

[47]  R. Balamurugan,et al.  Integrated optimal design of structures under multiple loads for topology and shape using genetic algorithm , 2006 .

[48]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[49]  R. Balamurugan,et al.  Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization , 2008, Appl. Soft Comput..