A Population-Based Local Search for Solving a Bi-objective Vehicle Routing Problem

In this paper we present a population-based local search for solving a bi-objective vehicle routing problem. The objectives of the problem are minimization of the tour length and balancing the routes. The algorithm repeatedly generates a pool of good initial solutions by using a randomized savings algorithm followed by local search. The local search uses three neighborhood structures and evaluates the fitness of candidate solutions using dominance relation. Several test instances are used to assess the performance of the new approach. Computational results show that the population-based local search outperforms the best known algorithm for this problem.

[1]  Paolo Toth,et al.  The Vehicle Routing Problem , 2002, SIAM monographs on discrete mathematics and applications.

[2]  Vinícius Amaral Armentano,et al.  Genetic local search for multi-objective flowshop scheduling problems , 2005, Eur. J. Oper. Res..

[3]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[4]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[5]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[6]  George B. Dantzig,et al.  The Truck Dispatching Problem , 1959 .

[7]  Michel Gendreau,et al.  A guide to vehicle routing heuristics , 2002, J. Oper. Res. Soc..

[8]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[9]  Richard F. Hartl,et al.  SavingsAnts for the Vehicle Routing Problem , 2002, EvoWorkshops.

[10]  Renato F. Werneck,et al.  Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem , 2006, Math. Program..

[11]  El-Ghazali Talbi,et al.  Path Relinking in Pareto Multi-objective Genetic Algorithms , 2005, EMO.

[12]  H. Morita,et al.  Experimental feedback on bioobjective permutation scheduling problems solved with a population heuristic , 2001 .

[13]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[14]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[15]  Nicolas Jozefowiez,et al.  Enhancements of NSGA II and Its Application to the Vehicle Routing Problem with Route Balancing , 2005, Artificial Evolution.

[16]  Christian Haubelt,et al.  Initial Population Construction for Convergence Improvement of MOEAs , 2005, EMO.

[17]  Richard F. Hartl,et al.  D-Ants: Savings Based Ants divide and conquer the vehicle routing problem , 2004, Comput. Oper. Res..

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Juan Julián Merelo Guervós,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[20]  Xavier Gandibleux,et al.  The Supported Solutions Used as a Genetic Information in a Population Heuristics , 2001, EMO.

[21]  Yves Rochat,et al.  Probabilistic diversification and intensification in local search for vehicle routing , 1995, J. Heuristics.

[22]  Roberto Baldacci,et al.  An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation , 2004, Oper. Res..

[23]  Nicolas Jozefowiez,et al.  Parallel and Hybrid Models for Multi-objective Optimization: Application to the Vehicle Routing Problem , 2002, PPSN.

[24]  Nicos Christofides,et al.  The vehicle routing problem , 1976, Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle.

[25]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[26]  J. K. Lenstra,et al.  Complexity of vehicle routing and scheduling problems , 1981, Networks.