Stochastic stabilization of differential systems with general decay rate

Some sufficient conditions concerning stability of solutions of stochastic differential evolution equations with general decay rate are first proved. Then, these results are interpreted as suitable stabilization ones for deterministic and stochastic systems. Also, they permit us to construct appropriate linear stabilizers in some particular situations.

[1]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[2]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[3]  Hans Crauel,et al.  Stabilization of Linear Systems by Noise , 1983 .

[4]  É. Pardoux,et al.  Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .

[5]  Michael Scheutzow,et al.  Stabilization and Destabilization by Noise in the Plane , 1993 .

[6]  Ao,et al.  Large time decay behavior of dynamical equations with random perturbation features , 2001 .

[7]  T. Caraballo,et al.  EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR DELAY STOCHASTIC EVOLUTION EQUATIONS , 2002 .

[8]  T. Caraballo,et al.  COMPARISON OF THE LONG-TIME BEHAVIOR OF LINEAR ITO AND STRATONOVICH PARTIAL DIFFERENTIAL EQUATIONS , 2001 .

[9]  Xuerong Mao,et al.  On stabilization of partial differential equations by noise , 2001, Nagoya Mathematical Journal.

[10]  L. Arnold,et al.  Stabilization by Noise Revisited , 1990 .

[11]  Xuerong Mao,et al.  Stochastic stabilization and destabilization , 1994 .

[12]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[13]  X. Mao,et al.  LARGE TIME DECAY BEHAVIOR OF DYNAMICAL EQUATIONS WITH RANDOM PERTURBATION FEATURES , 2001 .

[14]  Xuerong Mao,et al.  ALMOST SURE POLYNOMIAL STABILITY FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS , 1992 .

[15]  X. Mao,et al.  Exponential Stability of Stochastic Di erential Equations , 1994 .