A logarithmic Sobolev form of the Li-Yau parabolic inequality

We present a finite dimensional version of the logarithmic Sobolev inequality for heat kernel measures of non-negatively curved diffusion operators that contains and improves upon the Li-Yau parabolic inequality. This new inequality is of interest already in Euclidean space for the standard Gaussian measure. The result may also be seen as an extended version of the semigroup commutation properties under curvature conditions. It may be applied to reach optimal Euclidean logarithmic Sobolev inequalities in this setting. Exponential Laplace differential inequalities through the Herbst argument furthermore yield diameter bounds and dimensional estimates on the heat kernel volume of balls

[1]  G. Scheffer Local Poincaré inequalities in non-negative curvature and finite dimension , 2003 .

[2]  Laurent Saloff-Coste,et al.  Aspects of Sobolev-type inequalities , 2001 .

[3]  M. Ledoux The concentration of measure phenomenon , 2001 .

[4]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[5]  D. Bakry,et al.  Harnack inequalities on a manifold with positive or negative Ricci curvature , 1999 .

[6]  M. Ledoux The geometry of Markov diffusion generators , 1998 .

[7]  Michel Ledoux,et al.  Optimal heat kernel bounds under logarithmic Sobolev inequalities , 1997 .

[8]  M. Ledoux,et al.  Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator , 1996 .

[9]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[10]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[11]  E. Carlen Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .

[12]  N. Varopoulos Small time gaussian estimates of heat diffusion kernels. I: the semigroup technique , 1989 .

[13]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[14]  Peter Li Large time behavior of the heat equation on complete manifolds with non-negative Ricci curvature , 1986 .

[15]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[16]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[17]  I. Holopainen Riemannian Geometry , 1927, Nature.