Tonic Synaptic Inhibition Modulates Neuronal Output Pattern and Spatiotemporal Synaptic Integration

[1]  C. G. Phillips,et al.  Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats , 1956, The Journal of physiology.

[2]  M. Kuno Quantal components of excitatory synaptic potentials in spinal motoneurones , 1964, The Journal of physiology.

[3]  G. P. Moore,et al.  Pacemaker Neurons: Effects of Regularly Spaced Synaptic Input , 1964, Science.

[4]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[5]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[6]  C. Stevens,et al.  Synaptic noise and other sources of randomness in motoneuron interspike intervals. , 1968, Journal of neurophysiology.

[7]  W. T. Thach Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. , 1968, Journal of neurophysiology.

[8]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[9]  J. Albus A Theory of Cerebellar Function , 1971 .

[10]  S. Palay,et al.  Cerebellar Cortex: Cytology and Organization , 1974 .

[11]  J. Barrett,et al.  Motoneuron dendrites: role in synaptic integration. , 1975, Federation proceedings.

[12]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[13]  D. Armstrong,et al.  Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. , 1979, The Journal of physiology.

[14]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[15]  R. Nicoll,et al.  Spontaneous inhibitory post-synaptic potentials in hippocampus: Mechanism for tonic inhibition , 1980, Brain Research.

[16]  J. Jack,et al.  The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents. , 1981, The Journal of physiology.

[17]  K Krnjevicacute,et al.  An excitatory amino Acid. , 1982, Science.

[18]  D. Durand,et al.  Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining. , 1983, Journal of neurophysiology.

[19]  J. Bower,et al.  Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. , 1983, Journal of neurophysiology.

[20]  Y. Miyashita,et al.  Contribution of cerebellar intracortical inhibition to Purkinje cell response during vestibulo‐ocular reflex of alert rabbits. , 1984, The Journal of physiology.

[21]  P W Gage,et al.  Inhibitory post‐synaptic currents in rat hippocampal CA1 neurones. , 1984, The Journal of physiology.

[22]  R K Wong,et al.  Unitary inhibitory synaptic potentials in the guinea‐pig hippocampus in vitro. , 1984, The Journal of physiology.

[23]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[24]  M. Hamann,et al.  Quantitative evaluation of the properties of a pyridazinyl GABA derivative (SR 95531) as a GABAA competitive antaginist. An electrophysiological approach , 1988, Brain Research.

[25]  William R. Holmes,et al.  Effects of uniform and non-uniform synaptic ‘activation-distributions’ on the cable properties of modeled cortical pyramidal neurons , 1989, Brain Research.

[26]  R. Miles,et al.  Variation in strength of inhibitory synapses in the CA3 region of guinea‐pig hippocampus in vitro. , 1990, The Journal of physiology.

[27]  M. J. Friedlander,et al.  The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  P Andersen,et al.  Synaptic integration in hippocampal CA1 pyramids. , 1990, Progress in brain research.

[29]  A. Konnerth,et al.  Synaptic currents in cerebellar Purkinje cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[30]  I. Módy,et al.  Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release , 1991, Brain Research.

[31]  K. Stratford,et al.  Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  R. Llinás,et al.  In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Farrant,et al.  Excitatory amino acid receptor-channels in Purkinje cells in thin cerebellar slices , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  C. Koch,et al.  Synaptic background activity influences spatiotemporal integration in single pyramidal cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Idan Segev,et al.  The Impact of Parallel Fiber Background Activity on the Cable Properties of Cerebellar Purkinje Cells , 1992, Neural Computation.

[36]  K J Staley,et al.  Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. , 1992, Journal of neurophysiology.

[37]  R. Dingledine,et al.  CNQX increases spontaneous inhibitory input to CA3 pyramidal neurones in neonatal rat hippocampal slices , 1992, Brain Research.

[38]  N. Spruston,et al.  Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. , 1992, Journal of neurophysiology.

[39]  J Midtgaard,et al.  Stellate cell inhibition of Purkinje cells in the turtle cerebellum in vitro. , 1992, The Journal of physiology.

[40]  J. Midtgaard Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro. , 1992, The Journal of physiology.

[41]  Arne Møller,et al.  Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method , 1993, Brain Research.

[42]  J J Jack,et al.  Solutions for transients in arbitrarily branching cables: II. Voltage clamp theory. , 1993, Biophysical journal.

[43]  A. Marty,et al.  Neighboring cerebellar purkinje cells communicate via retrograde inhibition of common presynaptic interneurons , 1993, Neuron.

[44]  H. Gerschenfeld,et al.  Inhibitory synaptic currents in stellate cells of rat cerebellar slices. , 1993, The Journal of physiology.

[45]  M. Rogawski,et al.  GYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses , 1993, Neuron.

[46]  J. Olney,et al.  A benzodiazepine recognition site associated with the non-NMDA glutamate receptor , 1993, Neuron.

[47]  B. Barbour Synaptic currents evoked in purkinje cells by stimulating individual granule cells , 1993, Neuron.

[48]  H. Axelrad,et al.  Effects of recurrent collateral inhibition on Purkinje cell activity in the immature rat cerebellar cortex - an in vivo electrophysiological study , 1993, Brain Research.

[49]  Roberto Malinow,et al.  Measuring the impact of probabilistic transmission on neuronal output , 1993, Neuron.

[50]  G. Collingridge,et al.  Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors , 1993, Nature.

[51]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  J J Jack,et al.  Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. , 1993, Biophysical journal.

[53]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.

[54]  B Sakmann,et al.  Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[56]  Daniel Johnston,et al.  Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties , 1994, Trends in Neurosciences.

[57]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[58]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[59]  E. D’Angelo,et al.  Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. , 1995, The Journal of physiology.

[60]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[61]  William R. Softky,et al.  Simple codes versus efficient codes , 1995, Current Opinion in Neurobiology.

[62]  Terrence J. Sejnowski,et al.  'Balancing' of Conductances May Explain Irregular Cortical Spiking , 1995 .

[63]  Bert Sakmann,et al.  Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons , 1995, Neuron.

[64]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[65]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[66]  S. Cull-Candy,et al.  Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. , 1996, The Journal of physiology.

[67]  C. McBain,et al.  The hyperpolarization‐activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens‐alveus interneurones. , 1996, The Journal of physiology.

[68]  Paul Antoine Salin,et al.  Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. , 1996, Journal of neurophysiology.

[69]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[70]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[71]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[72]  A. Marty,et al.  Fluctuations of inhibitory postsynaptic currents in Purkinje cells from rat cerebellar slices. , 1996, The Journal of physiology.

[73]  Kenneth D. Miller,et al.  Physiological Gain Leads to High ISI Variability in a Simple Model of a Cortical Regular Spiking Cell , 1997, Neural Computation.

[74]  T. Freund,et al.  Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. , 1997, The Journal of physiology.

[75]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[76]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. Steinbach,et al.  Bicuculline and Gabazine Are Allosteric Inhibitors of Channel Opening of the GABAA Receptor , 1997, The Journal of Neuroscience.

[78]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[79]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[80]  J M Bower,et al.  The Role of Synaptic and Voltage-Gated Currents in the Control of Purkinje Cell Spiking: A Modeling Study , 1997, The Journal of Neuroscience.