Solution-processed organic transistors based on semiconducting blends

The latest advances in the use of solution processable organic semiconductor blends for organic field effect transistor (OFET) applications are reviewed. We summarise multi-component, thin film microstructure formation from solution with particular focus on phase separation and crystallisation of components. These approaches can then be applied to semiconducting materials and their use in organic devices. Several key applications are studied, namely ambipolar systems with n- and p-type components, high charge carrier mobility and uniform films for high performance OFETs, and the potential for self-assembly during OFET fabrication. Blending materials can in all cases be used to combine the advantageous properties of the individual components.

[1]  Lin,et al.  Early Stages of Nucleation and Growth in a Polymer Blend. , 1996, Physical review letters.

[2]  Jiro Kasahara,et al.  Solution-processed organic thin-film transistors with vertical nanophase separation , 2008 .

[3]  Robert A. Street,et al.  Surface‐Induced Self‐Encapsulation of Polymer Thin‐Film Transistors , 2006 .

[4]  J. Parisi,et al.  Field effect measurements on charge carrier mobilities in various polymer-fullerene blend compositions , 2006 .

[5]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[6]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[7]  Dong Hoon Lee,et al.  Phase-separated polydimethylsiloxane as a dielectric surface treatment layer for organic field effect transistors , 2009 .

[8]  Antonio Facchetti,et al.  Semiconductors for organic transistors , 2007 .

[9]  Janos Veres,et al.  Low‐k Insulators as the Choice of Dielectrics in Organic Field‐Effect Transistors , 2003 .

[10]  Gilles Horowitz,et al.  Organic thin film transistors: From theory to real devices , 2004 .

[11]  E. Moons,et al.  Control of phase separation in blends of polyfluorene (co)polymers and C60-derivative PCBM , 2005 .

[12]  Alberto Salleo,et al.  Solution Based Self‐Assembly of an Array of Polymeric Thin‐Film Transistors , 2007 .

[13]  Wi Hyoung Lee,et al.  Versatile Use of Vertical‐Phase‐Separation‐Induced Bilayer Structures in Organic Thin‐Film Transistors , 2008 .

[14]  D. Ginger,et al.  Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy. , 2007, Nano letters.

[15]  T. Minakata,et al.  Direct formation of pentacene thin films by solution process , 2005 .

[16]  D. Bradley,et al.  High mobility p-channel organic field effect transistors on flexible substrates using a polymer-small molecule blend , 2009 .

[17]  Martin Heeney,et al.  Undoped polythiophene field-effect transistors with mobility of 1cm2V−1s−1 , 2007 .

[18]  J. Rysz,et al.  Three‐Dimensional Information on the Phase Domain Structure of Thin Films of Polymer Blends Revealed by Secondary Ion Mass Spectrometry , 2001 .

[19]  S. Mannsfeld,et al.  Controlled Deposition of Crystalline Organic Semiconductors for Field‐Effect‐Transistor Applications , 2009 .

[20]  P. Blom,et al.  Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics , 2005, Nature materials.

[21]  Thomas N Jackson,et al.  Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V x s. , 2005, Journal of the American Chemical Society.

[22]  Mats Andersson,et al.  Vertical phase separation in spin-coated films of a low bandgap polyfluorene/PCBM blend—Effects of specific substrate interaction , 2007 .

[23]  L. Do,et al.  Synergistic effect of polymer and oligomer blends for solution-processable organic thin-film transistors , 2008 .

[24]  N. S. Sariciftci,et al.  Correlation between morphology and ambipolar transport in organic field-effect transistors , 2005 .

[25]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[26]  B. Ju,et al.  Organic thin film transistors using 6,13-bis(tri-isopropylsilylethynyl) pentacene embedded into polymer binders , 2009 .

[27]  J A Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[28]  E. van Veenendaal,et al.  Solution-processed ambipolar organic field-effect transistors and inverters , 2003, Nature materials.

[29]  Sankar Subramanian,et al.  Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. , 2008, Journal of the American Chemical Society.

[30]  H. Sirringhaus,et al.  Observation of Field‐Effect Transistor Behavior at Self‐Organized Interfaces , 2004 .

[31]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[32]  H. Kanamori,et al.  Facile fabrication method for p∕n-type and ambipolar transport polyphenylenevinylene-based thin-film field-effect transistors by blending C60 fullerene , 2005 .

[33]  John E. Anthony,et al.  Improving Organic Thin‐Film Transistor Performance through Solvent‐Vapor Annealing of Solution‐Processable Triethylsilylethynyl Anthradithiophene , 2006 .

[34]  A. Arias Vertically Segregated Polymer Blends: Their Use in Organic Electronics , 2006 .

[35]  John E. Anthony,et al.  High-performance organic integrated circuits based on solution processable polymer-small molecule blends , 2008 .

[36]  S. Jenekhe,et al.  n-Channel field-effect transistors from blends of conjugated polymers , 2002 .

[37]  J. Jaczewska,et al.  Ordering domains of spin cast blends of conjugated and dielectric polymers on surfaces patterned by soft- and photo-lithography , 2009 .

[38]  James Kirkpatrick,et al.  Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. , 2009, Journal of the American Chemical Society.

[39]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[40]  René A. J. Janssen,et al.  Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold , 2006, Nature materials.

[41]  R. Manley,et al.  Polymer–monomer binary mixtures. I. Eutectic and epitaxial crystallization in poly(ϵ‐caprolactone)–trioxane mixtures , 1977 .

[42]  Gilles Horowitz,et al.  An analytical model for organic‐based thin‐film transistors , 1991 .

[43]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[44]  Wi Hyoung Lee,et al.  Semiconductor‐Dielectric Blends: A Facile All Solution Route to Flexible All‐Organic Transistors , 2009 .

[45]  John E. Anthony,et al.  Functionalized Pentacene Active Layer Organic Thin‐Film Transistors , 2003 .

[46]  W. Milne,et al.  High performance organic semiconducting thin films: Ink jet printed polythiophene [rr-P3HT] , 2001 .

[47]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[48]  N D Robinson,et al.  Organic materials for printed electronics. , 2007, Nature materials.

[49]  Shinuk Cho,et al.  Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene , 2006 .

[50]  S. Yeates,et al.  Organic field effect transistors from ambient solution processed low molar mass semiconductor–insulator blends , 2008 .

[51]  Vivek M. Prabhu,et al.  Structure and properties of small molecule-polymer blend semiconductors for organic thin film transistors. , 2008, Journal of the American Chemical Society.

[52]  Richard L. Thompson,et al.  Surface segregation and self-stratification in blends of spin-cast polyfluorene derivatives , 2005 .

[53]  P. Flory Thermodynamics of High Polymer Solutions , 1941 .

[54]  Gilles Horowitz,et al.  GATE VOLTAGE DEPENDENT MOBILITY OF OLIGOTHIOPHENE FIELD-EFFECT TRANSISTORS , 1999 .

[55]  T. Kugler,et al.  Blends of semiconductor polymer and small molecular crystals for improved-performance thin-film transistors , 2005 .

[56]  Richard A. L. Jones,et al.  An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films , 2005, Nature materials.

[57]  Zhenan Bao,et al.  Complementary circuits with organic transistors , 1996 .

[58]  Jack E. Fernandez,et al.  Blends of polypyrrole and poly(vinyl alcohol) , 1993 .

[59]  T. Anthopoulos,et al.  Air-stable ambipolar organic transistors , 2007 .

[60]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[61]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[62]  John E. Anthony,et al.  High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors , 2007 .

[63]  A. Shard,et al.  XPS and AFM surface studies of solvent-cast PS/PMMA blends , 2001 .

[64]  S. Jenekhe,et al.  Ambipolar Charge Transport in Air‐Stable Polymer Blend Thin‐Film Transistors , 2004 .

[65]  John E. Anthony,et al.  High-mobility spin-cast organic thin film transistors , 2008 .

[66]  B. Servet,et al.  Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers , 1993 .

[67]  R. Friend,et al.  Phase Separation in Polyfluorene-Based Conjugated Polymer Blends: Lateral and Vertical Analysis of Blend Spin-Cast Thin Films , 2004 .

[68]  P. Blom,et al.  Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. , 2003, Physical review letters.

[69]  J S Brooks,et al.  Functionalized pentacene: improved electronic properties from control of solid-state order. , 2001, Journal of the American Chemical Society.

[70]  T. Anthopoulos,et al.  High‐Performance Polymer‐Small Molecule Blend Organic Transistors , 2009 .

[71]  C. Müller,et al.  α-Quaterthiophene–polyethylene blends: Phase behaviour and electronic properties , 2007 .

[72]  T. Jackson,et al.  Stacked pentacene layer organic thin-film transistors with improved characteristics , 1997, IEEE Electron Device Letters.

[73]  R. Street,et al.  Transport in polycrystalline polymer thin-film transistors , 2005 .

[74]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[75]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[76]  Eugenio Cantatore,et al.  Air‐Stable Complementary‐like Circuits Based on Organic Ambipolar Transistors , 2006 .

[77]  Bates,et al.  Surface-directed spinodal decomposition. , 1991, Physical review letters.

[78]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[79]  K. Takimiya,et al.  Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors , 2007 .

[80]  D. M. Leeuw,et al.  Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices , 1997 .

[81]  Ellen Moons,et al.  Conjugated polymer blends: linking film morphology to performance of light emitting diodes and photodiodes , 2002 .