Stability of a simple scheme for the approximation of elastic knots and self-avoiding inextensible curves

We discuss a semi-implicit numerical scheme that allows for minimizing the bending energy of curves within certain isotopy classes. To this end we consider a weighted sum of the bending energy and the tangent-point functional. Based on estimates for the second derivative of the latter and a uniform bi-Lipschitz radius, we prove a stability result implying energy decay during the evolution as well as maintenance of arclength parametrization. Finally we present some numerical experiments exploring the energy landscape, targeted to the question how to obtain global minimizers of the bending energy in knot classes, so-called elastic knots.

[1]  Henryk Gerlach,et al.  The Elastic Trefoil is the Doubly Covered Circle , 2015, 1510.06171.

[2]  Gerhard Dziuk,et al.  Error analysis for the elastic flow of parametrized curves , 2008, Math. Comput..

[3]  Harald Garcke,et al.  Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves , 2012, Numerische Mathematik.

[4]  J. Carr,et al.  Metastable patterns in solutions of ut = ϵ2uxx − f(u) , 1989 .

[5]  Sören Bartels,et al.  A simple scheme for the approximation of self-avoiding inextensible curves , 2018 .

[6]  S. Avvakumov,et al.  On the normal form of knots , 2014 .

[7]  大原 淳,et al.  Family of energy functionals of knots = 結び目のエネルギー汎函数の族 , 1991 .

[8]  Gerhard Dziuk,et al.  Evolution of Elastic Curves in Rn: Existence and Computation , 2002, SIAM J. Math. Anal..

[9]  J. O’Hara Energy of Knots and Conformal Geometry , 2003 .

[10]  M. Gromov Homotopical effects of dilatation , 1978 .

[11]  Maria G. Reznikoff,et al.  Slow motion of gradient flows , 2007 .

[12]  Tobias Hermes Analysis of the first variation and a numerical gradient flow for integral Menger curvature , 2014, 1408.6517.

[13]  Simon Blatt,et al.  Regularity theory for tangent-point energies: The non-degenerate sub-critical case , 2012, 1208.3605.

[14]  G. Buck,et al.  A simple energy function for knots , 1995 .

[15]  J. Maddocks,et al.  Global curvature, thickness, and the ideal shapes of knots. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Paola Pozzi,et al.  Curve shortening flow coupled to lateral diffusion , 2015, Numerische Mathematik.

[17]  Sören Bartels,et al.  A simple scheme for the approximation of the elastic flow of inextensible curves , 2013 .

[18]  Heiko von der Mosel,et al.  Tangent-point self-avoidance energies for curves , 2010, 1006.4566.

[19]  Henrik Schumacher,et al.  Pseudogradient Flows of Geometric Energies , 2017 .

[20]  Paola Pozzi,et al.  Evolution of open elastic curves in ℝn subject to fixed length and natural boundary conditions , 2014 .

[21]  Eitan Grinspun,et al.  Discrete quadratic curvature energies , 2006, Comput. Aided Geom. Des..

[22]  N. Marheineke,et al.  On a nonlinear partial differential algebraic system arising in the technical textile industry: analysis and numerics , 2012, 1203.3692.

[23]  Sebastian Scholtes Discrete knot energies , 2016, 1603.02464.

[24]  C. Schmeiser,et al.  An extended Filament Based Lamellipodium Model produces various moving cell shapes in the presence of chemotactic signals. , 2015, Journal of theoretical biology.

[25]  A. Hatcher,et al.  A proof of the Smale Conjecture, Diff(S3) 0(4) , 1983 .

[26]  D. A. Singer,et al.  Curve straightening and a minimax argument for closed elastic curves , 1985 .

[27]  M. G. Mora,et al.  Derivation of the nonlinear bending-torsion theory for inextensible rods by $\Gamma$-convergence , 2003 .

[28]  Hartmut Schwetlick,et al.  On a flow to untangle elastic knots , 2010 .

[29]  Heiko von der Mosel,et al.  Minimizing the elastic energy of knots , 1998 .

[30]  Simon Blatt,et al.  THE ENERGY SPACES OF THE TANGENT POINT ENERGIES , 2013 .