Metagrating-Based Terahertz Polarization Beam Splitter Designed by Simplified Modal Method

Terahertz waves are finding important applications in diverse fields, and meanwhile the manipulation of terahertz waves calls for the development of various functional devices. Here, we have designed and fabricated a metagrating-based polarization beam splitter for terahertz waves using the simplified modal method. By only considering two propagation modes and treating the grating as a Mach-Zehnder interferometer, the method can greatly simplify the reverse grating design process. The parameters of the grating are first obtained under the guidance of the simplified modal method and then improved upon by the finite element method. The fabricated device is finally experimentally demonstrated with a terahertz time-domain spectroscopy system. The diffraction efficiencies of the polarization beam splitter at 0.9 THz are measured to be 69 and 63% for TE and TM waves relative to that of a silicon plate, respectively. The corresponding extinction ratios are 12 and 17 dB for TE and TM waves, respectively. The experiment results agree well with the simulations.

[1]  Derek Abbott,et al.  Low-cost ultra-thin broadband terahertz beam-splitter. , 2012, Optics express.

[2]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[3]  H.B. Wallace,et al.  Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region , 2007, IEEE Transactions on Antennas and Propagation.

[4]  Cyril C. Renaud,et al.  The 2017 terahertz science and technology roadmap , 2017, Journal of Physics D: Applied Physics.

[5]  Zhen Tian,et al.  Electrically Tunable Perfect Terahertz Absorber Based on a Graphene Salisbury Screen Hybrid Metasurface , 2019, Advanced Optical Materials.

[6]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[7]  A. Tishchenko,et al.  Modal method in deep metal-dielectric gratings: the decisive role of hidden modes. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Jiaguang Han,et al.  Antireflection-assisted all-dielectric terahertz metamaterial polarization converter , 2018, Applied Physics Letters.

[9]  T. Gaylord,et al.  Diffraction analysis of dielectric surface-relief gratings , 1982 .

[10]  K. Nelson,et al.  Resonant and nonresonant control over matter and light by intense terahertz transients , 2013, Nature Photonics.

[11]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[12]  C. Chang-Hasnain,et al.  High contrast gratings for integrated optoelectronics , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[13]  Jianqiang Gu,et al.  Broadband non-polarizing terahertz beam splitters with variable split ratio , 2017 .

[14]  Wei Li,et al.  Metamaterial perfect absorber based hot electron photodetection. , 2014, Nano letters.

[15]  Ariel Epstein,et al.  Unveiling the Properties of Metagratings via a Detailed Analytical Model for Synthesis and Analysis , 2017, 1708.08187.

[16]  A. Tünnermann,et al.  An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings. , 2005, Optics express.

[17]  R. E. Collin,et al.  REFLECTION AND TRANSMISSION AT A SLOTTED DIELECTRIC INTERFACE , 1956 .

[18]  A. Tünnermann,et al.  Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency. , 2008, Optics express.

[19]  Yanfeng Li,et al.  Terahertz metamaterial beam splitters based on untraditional coding scheme. , 2019, Optics express.

[20]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[21]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[22]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[23]  Cheng Zhang,et al.  High performance bianisotropic metasurfaces: asymmetric transmission of light. , 2014, Physical review letters.

[24]  Liguo Zhu,et al.  Enhancing terahertz molecular fingerprint detection by a dielectric metagrating. , 2020, Optics letters.

[25]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[26]  Andreas Tünnermann,et al.  Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting. , 2007, Applied optics.

[27]  F. Boust,et al.  Controlling Diffraction Patterns with Metagratings , 2018, Physical Review Applied.

[28]  Xinyu Ma,et al.  Highly–efficient polarization–insensitive antireflection metagrating for terahertz waves , 2020, Optics Communications.

[29]  Youwen Liu,et al.  Polarization beam splitter based on extremely anisotropic black phosphorus ribbons. , 2020, Optics express.

[30]  Jingya Xie,et al.  Metasurface for multi-channel terahertz beam splitters and polarization rotators , 2018 .

[31]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[32]  Fan Yang,et al.  Evaluation and improvement of simplified modal method for designing dielectric gratings. , 2015, Optics express.

[33]  David Sell,et al.  Ultra-High-Efficiency Anomalous Refraction with Dielectric Metasurfaces , 2018 .

[34]  Changhe Zhou,et al.  Multireflection modal method for wideband fused-silica transmission gratings. , 2013, Applied optics.

[35]  Tadao Nagatsuma,et al.  A Review on Terahertz Communications Research , 2011 .

[36]  Christophe Fumeaux,et al.  Broadband Terahertz Circular‐Polarization Beam Splitter , 2018 .

[37]  J Axel Zeitler,et al.  In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[38]  Withawat Withayachumnankul,et al.  Dielectrics for Terahertz Metasurfaces: Material Selection and Fabrication Techniques , 2019, Advanced Optical Materials.

[39]  Guixin Li,et al.  Facile metagrating holograms with broadband and extreme angle tolerance , 2018, Light: Science & Applications.

[40]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[41]  Ross C. McPhedran,et al.  The Dielectric Lamellar Diffraction Grating , 1981 .