Semi-infinite programming, duality, discretization and optimality conditions

The aim of this article is to give a survey of some basic theory of semi-infinite programming. In particular, we discuss various approaches to derivations of duality, discretization, and first- and second-order optimality conditions. Some of the surveyed results are well known while others seem to be less noticed in that area of research. †Invited survey.

[1]  W. Rogosinski Moments of non-negative mass , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  J. Danskin The Theory of Max-Min and its Application to Weapons Allocation Problems , 1967 .

[3]  V. Levin APPLICATION OF E. HELLY'S THEOREM TO CONVEX PROGRAMMING, PROBLEMS OF BEST APPROXIMATION AND RELATED QUESTIONS , 1969 .

[4]  R. Tyrrell Rockafellar Conjugate Duality and Optimization , 1974 .

[5]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[6]  D. A. Edwards On the existence of probability measures with given marginals , 1978 .

[7]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[8]  A. Ben-Tal Second-order and related extremality conditions in nonlinear programming , 1980 .

[9]  J. M. Borwein,et al.  Direct theorems in semi-infinite convex programming , 1981, Math. Program..

[10]  A. Ben-Tal,et al.  A unified theory of first and second order conditions for extremum problems in topological vector spaces , 1982 .

[11]  Klaus Glashoff,et al.  Linear Optimization and Approximation , 1983 .

[12]  Jerzy Kyparisis,et al.  On uniqueness of Kuhn-Tucker multipliers in nonlinear programming , 1985, Math. Program..

[13]  Hidefumi Kawaski,et al.  An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems , 1988 .

[14]  Hidefumi Kawasaki An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems , 1988, Math. Program..

[15]  Hidefumi Kawasaki The upper and lower second order directional derivatives of a sup-type function , 1988, Math. Program..

[16]  R. Cominetti Metric regularity, tangent sets, and second-order optimality conditions , 1990 .

[17]  Hidefumi Kawasaki Second order necessary optimality conditions for minimizing a sup-type function , 1991, Math. Program..

[18]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[19]  Diethard Klatte Stable local minimizers in semi-infinite optimization: regularity and second-order conditions , 1994 .

[20]  J. Penot,et al.  Tangent sets to unilateral convex sets , 1995 .

[21]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[22]  Alexander Shapiro On Uniqueness of Lagrange Multipliers in Optimization Problems Subject to Cone Constraints , 1997, SIAM J. Optim..

[23]  René Henrion,et al.  Regularity and Stability in Nonlinear Semi-Infinite Optimization , 1998 .

[24]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[25]  Alexander Shapiro,et al.  Second Order Optimality Conditions Based on Parabolic Second Order Tangent Sets , 1999, SIAM J. Optim..

[26]  G. Still Discretization in semi-infinite programming: The rate of approximation , 2001 .

[27]  Georg Still,et al.  Discretization in semi-infinite programming: the rate of convergence , 2001, Math. Program..

[28]  Marco A. López,et al.  Linear semi-infinite programming theory: An updated survey , 2002, Eur. J. Oper. Res..

[29]  Oliver Stein,et al.  Bi-Level Strategies in Semi-Infinite Programming , 2003 .

[30]  O. Mangasarian On Concepts of Directional Differentiability , 2004 .

[31]  A. Shapiro On duality theory of convex semi-infinite programming , 2005 .

[32]  R. Steele,et al.  Optimization , 2005, Encyclopedia of Biometrics.

[33]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[34]  Oliver Stein,et al.  Generalized semi-infinite programming: A tutorial , 2008 .