Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps

Abstract We study the dynamics and kneading theory of topologically expansive piecewise increasing maps of the interval with a single discontinuity (Lorenz maps). We characterise those maps which are locally eventually onto, locally onto, and neither of the above, in terms of the renormalisability or otherwise of the kneading invariant. We also show how the decomposition of the non-wandering set is related to the renormalisability of the kneading invariant. We discuss our results in the context of other authors' results on similar classes of maps.

[1]  R. F. Williams THE BIFURCATION SPACE OF THE LORENZ ATTRACTOR , 1979 .

[2]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[3]  R. F. Williams,et al.  The structure of Lorenz attractors , 1979 .

[4]  Procaccia,et al.  New universal scenarios for the onset of chaos in Lorenz-type flows. , 1986, Physical review letters.

[5]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[6]  John Guckenheimer,et al.  A Strange, Strange Attractor , 1976 .

[7]  David A. Rand,et al.  The topological classification of Lorenz attractors , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  New Directions in Dynamical Systems: Global Bifurcations in Flows , 1988 .

[9]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[10]  Global structure of homoclinic bifurcations: a combinatorial approach , 1989 .

[11]  Differentiability of the stable foliation for the model Lorenz equations , 1981 .

[12]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[13]  Periods and entropy for Lorenz-like maps , 1989 .

[14]  C. Tresser,et al.  Splitting words and Lorenz braids , 1993 .

[15]  Transitivity and invariant measures for the geometric model of the Lorenz equations , 1984, Ergodic Theory and Dynamical Systems.

[16]  R. MacKay A simple proof of Denjoy's theorem , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Alain Arneodo,et al.  A possible new mechanism for the onset of turbulence , 1981 .

[18]  W. Parry The lorenz attractor and a related population model , 1979 .

[19]  Paul Glendinning,et al.  Topological conjugation of Lorenz maps by β-transformations , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  H. P. F. Swinnerton-Dyer,et al.  The Basic Lorenz List and Sparrow'S Conjecture A , 1984 .

[21]  R. Robinson,et al.  Homoclinic bifurcation to a transitive attractor of Lorenz type , 1989 .

[22]  M. R. Palmer On the classification of measure preserving transformations of Lebesgue spaces. , 1979 .

[23]  Andrey Shilnikov,et al.  On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .

[24]  Colin Sparrow,et al.  The Lorenz equations , 1982 .

[25]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[26]  C. Sparrow,et al.  The classification of topologically expansive lorenz maps , 1990 .

[27]  W. Parry Symbolic dynamics and transformations of the unit interval , 1966 .

[28]  Oscar E. Lanford,et al.  Dynamique symbolique des rotations , 1984 .

[29]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[30]  L. Jonker,et al.  Bifurcations in one dimension , 1980 .