Gradient watersheds in morphological scale-space

After introducing several results relating to the modification of the homotopy of gradient functions based on extrema in the base image and building on earlier results in morphological scale-space, we introduce a scale-space monotonicity theorem for regions of an image defined by watersheds of a gradient function modified to retain only the local minima or maxima of its smoothed parent image. We then illustrate the theorem with an example of the scale-space extraction of texture features from the nuclei of cervical cells.

[1]  Michel Grimaud,et al.  New measure of contrast: the dynamics , 1992, Optics & Photonics.

[2]  Serge Beucher,et al.  Segmentation tools in mathematical morphology , 1990, Optics & Photonics.

[3]  Pierre Soille,et al.  Dimensionality in image analysis , 1992, J. Vis. Commun. Image Represent..

[4]  P. Jackway,et al.  Morphological scale-space with application to three-dimensional object recognition , 1995 .

[5]  John M. Gauch,et al.  Multiresolution Analysis of Ridges and Valleys in Grey-Scale Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Richard W. Conners,et al.  A Theoretical Comparison of Texture Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Petros Maragos,et al.  Evolution equations for continuous-scale morphological filtering , 1994, IEEE Trans. Signal Process..

[8]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[9]  Laurent Najman,et al.  Geodesic Saliency of Watershed Contours and Hierarchical Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Laurent Najman,et al.  Watershed of a continuous function , 1994, Signal Process..

[11]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[15]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  Brian C. Lovell,et al.  Classification in scale-space: Applications to texture analysis , 1995 .

[17]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[18]  Philippe Salembier,et al.  Morphological multiscale segmentation for image coding , 1994, Signal Process..

[19]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  S. Beucher,et al.  Morphological segmentation , 1990, J. Vis. Commun. Image Represent..

[21]  H Guski,et al.  Chromatin structure analysis based on a hierarchic texture model. , 1995, Analytical and quantitative cytology and histology.

[22]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Arnold W. M. Smeulders,et al.  The Morphological Structure of Images: The Differential Equations of Morphological Scale-Space , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Paul T. Jackway On Dimensionality in Multiscale Morphological Scale-Space with Elliptic Poweroid Structuring Functions , 1995, J. Vis. Commun. Image Represent..

[25]  M.-H. Chen,et al.  A Multiscanning Approach Based on Morphological Filtering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  G. Matheron Random Sets and Integral Geometry , 1976 .

[27]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[28]  Laurent Najman,et al.  A dynamic hierarchical segmentation algorithm , 1994 .

[29]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Paul Jackway Morphological scale-space , 1992 .

[31]  Paul T. Jackway,et al.  Properties of multiscale morphological smoothing by poweroids , 1994, Pattern Recognit. Lett..

[32]  Luis Alvarez,et al.  Formalization and computational aspects of image analysis , 1994, Acta Numerica.

[33]  F. Meyer,et al.  Quantitative analysis of the chromatin of lymphocytes: an assay on comparative structuralism. , 1980, Blood cells.