A State-Space Modeling of the Information Content of Trading Volume

Abstract We propose a state-space modeling approach for decomposing trading volume into its liquidity-driven and information-driven components. Using a set of high-frequency SP however, it is not a significant predictor of one-minute stock returns. This disparity is explained by high-frequency trading activity, which eliminates pricing inefficiencies at low latencies.

[1]  Bruno Biais,et al.  Price Discovery and Learning during the Preopening Period in the Paris Bourse , 1999, Journal of Political Economy.

[2]  Giorgio E. Primiceri,et al.  The Time Varying Volatility of Macroeconomic Fluctuations , 2006 .

[3]  Siem Jan Koopman,et al.  Modeling Around-the-Clock Price Discovery for Cross-Listed Stocks Using State Space Methods , 2004 .

[4]  Ruey S. Tsay,et al.  A nonlinear autoregressive conditional duration model with applications to financial transaction data , 2001 .

[5]  Ben S. Branch,et al.  BID‐ASKED SPREADS ON THE AMEX AND THE BIG BOARD , 1977 .

[6]  T. Hendershott,et al.  Price Discovery and Trading After Hours , 2003 .

[7]  Kingsley Y. L. Fong,et al.  Algorithmic Trading and Market Quality: International Evidence , 2015, Journal of Financial and Quantitative Analysis.

[8]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[9]  Bidisha Chakrabarty,et al.  Evaluating Trade Classification Algorithms: Bulk Volume Classification versus the Tick Rule and the Lee-Ready Algorithm , 2014 .

[10]  Stephen Morris,et al.  TRADE WITH HETEROGENEOUS PRIOR BELIEFS AND ASYMMETRIC INFORMATION , 1994 .

[11]  Björn Hagströmer,et al.  The Diversity of High-Frequency Traders , 2013 .

[12]  Richard Roll,et al.  Orderimbalance, Liquidity and Market Returns , 2001 .

[13]  Marilyn K. Wiley,et al.  The Impact of Trader Type on the Futures Volatility-Volume Relation , 1999 .

[14]  Jeffrey R. Russell,et al.  A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times , 2005 .

[15]  Vyacheslav Fos,et al.  Insider Trading, Stochastic Liquidity and Equilibrium Prices , 2012 .

[16]  Martin Hellwig,et al.  On the aggregation of information in competitive markets , 1980 .

[17]  Serhat Yildiz,et al.  The Role of HFTs in Order Flow Toxicity and Stock Price Variance, and Predicting Changes in HFTs’ Liquidity Provisions , 2016 .

[18]  Thomas E. Copeland,et al.  A Model of Asset Trading under the Assumption of Sequential Information Arrival , 1976 .

[19]  David Easley,et al.  Flow Toxicity and Liquidity in a High Frequency World , 2012 .

[20]  John C. Fellingham,et al.  An Equilibrium Model of Asset Trading with Sequential Information Arrival , 1981 .

[21]  Greg N. Gregoriou,et al.  Stock market volatility , 2009 .

[22]  Tālis J. Putniņš,et al.  High frequency trading and comovement in financial markets , 2019, Journal of Financial Economics.

[23]  Avanidhar Subrahmanyam,et al.  Market Liquidity and Trading Activity , 2000 .

[24]  Jiang Wang,et al.  A Model of Intertemporal Asset Prices Under Asymmetric Information , 2011 .

[25]  Karel Hrazdil,et al.  Liquidity and Market Efficiency: A Large Sample Study , 2010 .

[26]  Bong‐Soo Lee,et al.  The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence , 2002 .

[27]  Maureen O'Hara,et al.  The Microstructure of the “Flash Crash”: Flow Toxicity, Liquidity Crashes, and the Probability of Informed Trading , 2011, The Journal of Portfolio Management.

[28]  Joseph E. McCarthy,et al.  State space modeling of price and volume dependence: Evidence from currency futures , 1993 .

[29]  Jonathan M. Karpoff The Relation between Price Changes and Trading Volume: A Survey , 1987, Journal of Financial and Quantitative Analysis.

[30]  Anat R. Admati,et al.  A Theory of Intraday Patterns: Volume and Price Variability , 1988 .

[31]  Torben G. Andersen,et al.  VPIN and the Flash Crash , 2011 .

[32]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[33]  Joel Hasbrouck,et al.  Measuring the Information Content of Stock Trades , 1991 .

[34]  Christopher G. Lamoureux,et al.  Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects , 1990 .

[35]  Beum-Jo Park Surprising information, the MDH, and the relationship between volatility and trading volume , 2010 .

[36]  T. Hendershott,et al.  High Frequency Trading and Price Discovery , 2013, SSRN Electronic Journal.

[37]  Maureen O'Hara,et al.  PRICE, TRADE SIZE, AND INFORMATION IN SECURITIES MARKETS* , 1987 .

[38]  Ingrid M. Werner,et al.  Diving Into Dark Pools , 2011, Financial Management.

[39]  Gbenga Ibikunle Opening and Closing Price Efficiency: Do Financial Markets Need the Call Auction? , 2014 .

[40]  David S. Stoffer Time series analysis by state space models: J. Durbin and S. J. Koopman; Oxford University Press, Oxford, 2001, pp 253 + xvii, ISBN: 0 19 852354 8 , 2003, Autom..

[41]  Vyacheslav Fos,et al.  Do Prices Reveal the Presence of Informed Trading? , 2012 .

[42]  Hong Liu,et al.  So What Orders Do Informed Traders Use? , 2004 .

[43]  T. Hendershott,et al.  A comparison of trading and non-trading mechanisms for price discovery , 2008 .

[44]  George A. Akerlof The Market for “Lemons”: Quality Uncertainty and the Market Mechanism , 1970 .

[45]  Gbenga Ibikunle Trading Places: Price Leadership and the Competition for Order Flow , 2014, Journal of Empirical Finance.

[46]  Robert F. Engle,et al.  The Econometrics of Ultra-High Frequency Data , 1996 .

[47]  A. Kyle Continuous Auctions and Insider Trading , 1985 .

[48]  Avanidhar Subrahmanyam,et al.  Evidence on the Speed of Convergence to Market Efficiency , 2001 .

[49]  Charles M. C. Lee,et al.  Inferring Trade Direction from Intraday Data , 1991 .

[50]  Y. Amihud,et al.  Illiquidity and Stock Returns II: Cross-Section and Time-Series Effects , 2018, The Review of Financial Studies.

[51]  Tarun Chordia,et al.  The Impact of Trades on Daily Volatility , 2004 .

[52]  M. Păcurar,et al.  Autoregressive Conditional Duration Models in Finance: A Survey of the Theoretical and Empirical Literature , 2008 .

[53]  T. W. Epps,et al.  The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis , 1976 .

[54]  Tālis J. Putniņš,et al.  Dark Trading and Price Discovery , 2015 .

[55]  Craig Hiemstra,et al.  Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation , 1994 .

[56]  The relationship between volume and price variability in futures markets , 2000 .

[57]  A. Menkveld High frequency trading and the new market makers , 2013 .

[58]  Markus K. Brunnermeier Asset Pricing under Asymmetric Information: Bubbles, Crashes, Technical Analysis, and Herding , 2001 .

[59]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[60]  Matti Suominen,et al.  Trading Volume and Information Revelation in Stock Market , 2001, Journal of Financial and Quantitative Analysis.

[61]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[62]  Lawrence Harris,et al.  Transaction Data Tests of the Mixture of Distributions Hypothesis , 1987, Journal of Financial and Quantitative Analysis.

[63]  Albert S. Kyle,et al.  Market structure, information, futures markets, and price formation. , 1984 .

[64]  Clara Vega,et al.  Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market: Rise of the Machines , 2014 .

[65]  Hans R. Stoll,et al.  The Components of the Bid-Ask Spread: A General Approach, Reviews of Financial Studies , 1997 .

[66]  Richard Roll,et al.  Liquidity and Market Efficiency , 2008 .

[67]  Albert S. Kyle,et al.  Informed Speculation with Imperfect Competition , 1989 .

[68]  L. Harris Cross-Security Tests of the Mixture of Distributions Hypothesis , 1986, Journal of Financial and Quantitative Analysis.