Multimessenger observations of core-collapse supernovae: Exploiting the standing accretion shock instability

The gravitational wave (GW) and neutrino signals from core-collapse supernovae (CCSNe) are expected to carry pronounced imprints of the standing accretion shock instability (SASI). We investigate whether the correlation between the SASI signatures in the GW and neutrino signals could be exploited to enhance the detection efficiency of GWs. We rely on a benchmark full-scale three-dimensional CCSN simulation with zero-age main sequence mass of $27\ M_\odot$. Two search strategies are explored: 1.~the inference of the SASI frequency range and/or time window from the neutrino event rate detectable at the IceCube Neutrino Observatory; 2.~the use of the neutrino event rate to build a matched filter template. We find that incorporating information from the SASI modulations of the IceCube neutrino event rate can increase the detection efficiency compared to standard GW excess energy searches up to $30\%$ for nearby CCSNe. However, we do not find significant improvements in the overall GW detection efficiency for CCSNe more distant than $1.5$~kpc. We demonstrate that the matched filter approach performs better than the unmodeled search method, which relies on a frequency bandpass inferred from the neutrino signal. The improved detection efficiency provided by our matched filter method calls for additional work to outline the best strategy for the first GW detection from CCSNe.

[1]  N. Christensen,et al.  Inference of protoneutron star properties in core-collapse supernovae from a gravitational-wave detector network , 2023, Physical Review D.

[2]  I. Tamborra,et al.  Standing accretion shock instability in the collapse of a rotating stellar core , 2022, Physical Review D.

[3]  M. Zanolin,et al.  Characterizing a supernova’s standing accretion shock instability with neutrinos and gravitational waves , 2022, Physical Review D.

[4]  O. E. Bronson Messer,et al.  Core Collapse Supernova Gravitational Wave Emission for Progenitors of 9.6, 15, and 25 Solar Masses , 2022, 2208.10643.

[5]  S. Richers,et al.  Fast Flavor Transformations , 2022, 2207.03561.

[6]  S. Klimenko Wavescan: multiresolution regression of gravitational-wave data , 2022, 2201.01096.

[7]  P. K. Panda,et al.  GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run , 2021, 2111.03606.

[8]  K. Kotake,et al.  Insights into non-axisymmetric instabilities in three-dimensional rotating supernova models with neutrino and gravitational-wave signatures , 2021, Monthly Notices of the Royal Astronomical Society.

[9]  C. Casentini,et al.  Multimessenger analysis strategy for core-collapse supernova search: gravitational waves and low-energy neutrinos , 2021, Journal of Cosmology and Astroparticle Physics.

[10]  S. Klimenko,et al.  Detecting and reconstructing gravitational waves from the next galactic core-collapse supernova in the advanced detector era , 2021, Physical Review D.

[11]  H. Janka,et al.  Gravitational-wave signals from 3D supernova simulations with different neutrino-transport methods , 2021 .

[12]  F. Ricci,et al.  Deep learning for core-collapse supernova detection , 2021, Physical Review D.

[13]  P. Cerdá-Durán,et al.  Inference of protoneutron star properties from gravitational-wave data in core-collapse supernovae , 2020, Physical Review D.

[14]  I. Tamborra,et al.  New Developments in Flavor Evolution of a Dense Neutrino Gas , 2020, Annual Review of Nuclear and Particle Science.

[15]  M. J. Williams,et al.  GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run , 2021 .

[16]  O. E. Bronson Messer,et al.  Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae , 2020, 2010.09013.

[17]  A. Burrows,et al.  Core-collapse supernova explosion theory , 2020, Nature.

[18]  M. Edwards Classifying the equation of state from rotating core collapse gravitational waves with deep learning , 2020, 2009.07367.

[19]  E. Cappellaro,et al.  On the rate of core collapse supernovae in the milky way , 2020, New Astronomy.

[20]  A. Burrows,et al.  Gravitational Waves from Neutrino Emission Asymmetries in Core-collapse Supernovae , 2020, The Astrophysical Journal.

[21]  E. Milotti,et al.  coherent WaveBurst, a pipeline for unmodeled gravitational-wave data analysis , 2020, SoftwareX.

[22]  Kai Staats,et al.  Enhancing gravitational-wave science with machine learning , 2020, Mach. Learn. Sci. Technol..

[23]  Marco Cavaglia,et al.  Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach , 2020, Mach. Learn. Sci. Technol..

[24]  Elena Cuoco,et al.  Core-Collapse supernova gravitational-wave search and deep learning classification , 2020, Mach. Learn. Sci. Technol..

[25]  C. Messenger,et al.  Detection and classification of supernova gravitational wave signals: A deep learning approach , 2019, Physical Review D.

[26]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[27]  H. Janka,et al.  Neutrino emission characteristics of black hole formation in three-dimensional simulations of stellar collapse , 2019, Physical Review D.

[28]  H. Janka,et al.  Effects of the standing accretion-shock instability and the lepton-emission self-sustained asymmetry in the neutrino emission of rotating supernovae , 2019, Physical Review D.

[29]  B. A. Boom,et al.  A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals , 2019, Classical and Quantum Gravity.

[30]  P. K. Panda,et al.  An Optically Targeted Search for Gravitational Waves emitted by Core-Collapse Supernovae during the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. , 2019 .

[31]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[32]  P. Cerdá-Durán,et al.  Universal Relations for Gravitational-Wave Asteroseismology of Protoneutron Stars. , 2019, Physical review letters.

[33]  J. Powell,et al.  Astrophysics with core-collapse supernova gravitational wave signals in the next generation of gravitational wave detectors , 2019, Physical Review D.

[34]  D. Radice,et al.  Characterizing the Gravitational Wave Signal from Core-collapse Supernovae , 2018, The Astrophysical Journal.

[35]  J. Powell,et al.  Gravitational wave emission from 3D explosion models of core-collapse supernovae with low and normal explosion energies , 2018, Monthly Notices of the Royal Astronomical Society.

[36]  C. Palomba,et al.  New method to observe gravitational waves emitted by core collapse supernovae , 2018, Physical Review D.

[37]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[38]  H. Janka,et al.  Identifying rotation in SASI-dominated core-collapse supernovae with a neutrino gyroscope , 2018, Physical Review D.

[39]  Alejandro Torres-Forn'e,et al.  Towards asteroseismology of core-collapse supernovae with gravitational wave observations – II. Inclusion of space–time perturbations , 2018, Monthly Notices of the Royal Astronomical Society.

[40]  J. Powell Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches , 2018, Classical and Quantum Gravity.

[41]  Kei Kotake,et al.  Anisotropic emission of neutrino and gravitational-wave signals from rapidly rotating core-collapse supernovae , 2017, 1711.01905.

[42]  J. Font,et al.  Towards asteroseismology of core-collapse supernovae with gravitational-wave observations – I. Cowling approximation , 2017, 1708.01920.

[43]  K. Scholberg Supernova signatures of neutrino mass ordering , 2017, 1707.06384.

[44]  Alexander H. Nitz,et al.  Detecting Binary Compact-object Mergers with Gravitational Waves: Understanding and Improving the Sensitivity of the PyCBC Search , 2017, 1705.01513.

[45]  O. E. Bronson Messer,et al.  Gravitational-wave signal of a core-collapse supernova explosion of a 15 M⊙ star , 2017, 1701.07325.

[46]  D. Radice,et al.  Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism , 2016, Space Science Reviews.

[47]  M. Oertel,et al.  Equations of state for supernovae and compact stars , 2016, 1610.03361.

[48]  Tum,et al.  Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae , 2016, 1607.05199.

[49]  K. Kotake,et al.  A NEW GRAVITATIONAL-WAVE SIGNATURE FROM STANDING ACCRETION SHOCK INSTABILITY IN SUPERNOVAE , 2016, 1605.09215.

[50]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[51]  K. Hayama,et al.  Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies , 2016, 1602.03028.

[52]  S. Chakraborty,et al.  Collective neutrino flavor conversion: Recent developments , 2016, 1602.02766.

[53]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[54]  C. Ott,et al.  Observing Gravitational Waves from Core-Collapse Supernovae in the Advanced Detector Era , 2015, 1511.02836.

[55]  H. Janka,et al.  Supernova Neutrinos: Production, Oscillations and Detection , 2015, 1508.00785.

[56]  O. E. Bronson Messer,et al.  Gravitational Wave Signatures of Ab Initio Two-Dimensional Core Collapse Supernova Explosion Models for 12-25 Solar Masses Stars , 2015, 1505.05824.

[57]  Antonio Marquina,et al.  Total-variation-based methods for gravitational wave denoising , 2014, 1409.7888.

[58]  Garching,et al.  Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations , 2014, 1406.0006.

[59]  H. Janka,et al.  SELF-SUSTAINED ASYMMETRY OF LEPTON-NUMBER EMISSION: A NEW PHENOMENON DURING THE SUPERNOVA SHOCK-ACCRETION PHASE IN THREE DIMENSIONS , 2014, 1402.5418.

[60]  M. Aloy,et al.  GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE , 2013, 1310.8290.

[61]  H. Janka,et al.  Neutrino signature of supernova hydrodynamical instabilities in three dimensions. , 2013, Physical review letters.

[62]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[63]  H.-Th. Janka,et al.  SASI ACTIVITY IN THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF SUPERNOVA CORES , 2013, 1303.6269.

[64]  H. Janka,et al.  High-resolution supernova neutrino spectra represented by a simple fit , 2012, 1211.3920.

[65]  H. Janka,et al.  A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS , 2012, 1210.6984.

[66]  H. Janka,et al.  Fast time variations of supernova neutrino signals from 3-dimensional models , 2012, 1208.0043.

[67]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[68]  H. Aihara,et al.  Letter of Intent: The Hyper-Kamiokande Experiment --- Detector Design and Physics Potential --- , 2011, 1109.3262.

[69]  P. O. Hulth,et al.  IceCube sensitivity for low-energy neutrinos from nearby supernovae , 2011, 1108.0171.

[70]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[71]  H. Janka,et al.  Fast time variations of supernova neutrino fluxes and their detectability , 2010, 1006.1889.

[72]  Benno Willke,et al.  The third generation of gravitational wave observatories and their science reach , 2010 .

[73]  Y. Qian,et al.  Collective Neutrino Oscillations , 2010, 1001.2799.

[74]  Nelson Christensen,et al.  Bayesian reconstruction of gravitational wave burst signals from simulations of rotating stellar core collapse and bounce , 2009, 0909.1093.

[75]  F. Halzen,et al.  Reconstructing the supernova bounce time with neutrinos in IceCube , 2009, 0908.2317.

[76]  C. Ott,et al.  A MODEL FOR GRAVITATIONAL WAVE EMISSION FROM NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE , 2009, 0907.4762.

[77]  N. Leroy,et al.  On the background estimation by time slides in a network of gravitational wave detectors , 2009, 0906.2120.

[78]  W Fulgione,et al.  Neutrinos from supernovae as a trigger for gravitational wave search. , 2009, Physical review letters.

[79]  Ik Siong Heng,et al.  Rotating stellar core-collapse waveform decomposition: a principal component analysis approach , 2008, 0810.5707.

[80]  Christian D. Ott,et al.  The gravitational-wave signature of core-collapse supernovae , 2008, 0809.0695.

[81]  H. Janka,et al.  Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae , 2008, 0808.4136.

[82]  G.Mitselmakher,et al.  Coherent method for detection of gravitational wave bursts , 2008, 0802.3232.

[83]  Robert Chapman,et al.  How common are long gamma-ray bursts in the local Universe? , 2007, 0708.2106.

[84]  CEA-Saclay,et al.  Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the , 2007, 0704.3001.

[85]  C. Ott,et al.  Maximum Entropy for Gravitational Wave Data Analysis: Inferring the Physical Parameters of Core-Collapse Supernovae , 2007, 0704.2157.

[86]  G. Martínez-Pinedo,et al.  Theory of core-collapse supernovae , 2006, astro-ph/0612072.

[87]  A. Mezzacappa,et al.  Pulsar spins from an instability in the accretion shock of supernovae , 2006, Nature.

[88]  M. Rampp,et al.  Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport II. Models for different progenitor stars , 2005, astro-ph/0512189.

[89]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[90]  M. Rampp,et al.  Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport - I. Numerical method and results for a 15 solar mass star , 2005, astro-ph/0507135.

[91]  J. Beacom,et al.  Detection of neutrinos from supernovae in nearby galaxies. , 2005, Physical review letters.

[92]  A. Marek,et al.  Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations , 2005, astro-ph/0502161.

[93]  G. Mitselmakher,et al.  A coherent method for detection of gravitational wave bursts , 2004 .

[94]  B. Allen χ2 time-frequency discriminator for gravitational wave detection , 2004, gr-qc/0405045.

[95]  A. Mezzacappa,et al.  Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae , 2002, astro-ph/0210634.

[96]  H. Janka,et al.  Monte Carlo Study of Supernova Neutrino Spectra Formation , 2002, astro-ph/0208035.

[97]  H. Janka,et al.  Radiation hydrodynamics with neutrinos - Variable Eddington factor method for core-collapse supernova simulations , 2002, astro-ph/0203101.

[98]  H. Janka Conditions for shock revival by neutrino heating in core-collapse supernovae , 2000, astro-ph/0008432.

[99]  J. Graham-Pole,et al.  Physical , 1998, The Lancet.

[100]  F. Swesty,et al.  A Generalized equation of state for hot, dense matter , 1991 .

[101]  B. Fryxell,et al.  Instability and clumping in SN 1987A , 1991 .

[102]  B. Fryxell,et al.  Instabilities and clumping in SN 1987A. I, Early evolution in two dimensions , 1991 .

[103]  C. Ott,et al.  THE PROGENITOR DEPENDENCE OF THE PREEXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE , 2021 .

[104]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[105]  O. E. Bronson Messer,et al.  Gravitational Wave Signatures of Ab Initio Two-Dimensional Core Collapse Supernova Explosion Models for 12–25 M (cid:12) Stars , 2015 .

[106]  S Klimenko,et al.  A wavelet method for detection of gravitational wave bursts , 2004 .

[107]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.