INFLATING HOT JUPITERS WITH OHMIC DISSIPATION

We present a new, magnetohydrodynamic mechanism for inflation of close-in giant extrasolar planets. The idea behind the mechanism is that current, which is induced through interaction of atmospheric winds and the planetary magnetic field, results in significant Ohmic dissipation of energy in the interior. We develop an analytical model for computation of interior Ohmic dissipation, with a simplified treatment of the atmosphere. We apply our model to HD209458b, Tres-4b, and HD189733b. With conservative assumptions for wind speed and field strength, our model predicts a generated power that appears to be large enough to maintain the transit radii, opening an unexplored avenue toward solving a decade-old puzzle of extrasolar gas giant radius anomalies.

[1]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[2]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[3]  T. Barman,et al.  The physical properties of extra-solar planets , 2010, 1001.3577.

[4]  K. Menou,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: A SHALLOW THREE-DIMENSIONAL MODEL , 2008, 0809.1671.

[5]  W. D. Cochran,et al.  Kepler’s Optical Phase Curve of the Exoplanet HAT-P-7b , 2009, Science.

[6]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[7]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[8]  U. Christensen,et al.  Energy flux determines magnetic field strength of planets and stars , 2009, Nature.

[9]  M. Holman,et al.  Accepted for publication in the Astrophysical Journal Letters Obliquity Tides on Hot Jupiters , 2005 .

[10]  M. Marley,et al.  Atmospheric Circulation of Hot Jupiters: Three-dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing , 2008, 0802.0327.

[11]  H. K. Moffatt Magnetic Field Generation in Electrically Conducting Fluids , 1978 .

[12]  G. Laughlin,et al.  Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets , 2007, 0711.2106.

[13]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[14]  K. Lodders Alkali Element Chemistry in Cool Dwarf Atmospheres , 1999 .

[15]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[16]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[17]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[18]  G. Laughlin,et al.  On the Radii of Extrasolar Giant Planets , 2003 .

[19]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[20]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[21]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[22]  Adam Burrows,et al.  TIDAL HEATING MODELS FOR THE RADII OF THE INFLATED TRANSITING GIANT PLANETS WASP-4b, WASP-6b, WASP-12b, WASP-15b, AND TrES-4 , 2009, 0910.4394.

[23]  A. Burrows,et al.  DETECTION OF A TEMPERATURE INVERSION IN THE BROADBAND INFRARED EMISSION SPECTRUM OF TrES-4 , 2008, 0810.0021.

[24]  D. Clayton Principles of stellar evolution and nucleosynthesis , 1983 .

[25]  R. Millikan,et al.  Modern Physics , 1926, Nature.

[26]  Darin Ragozzine,et al.  PROBING THE INTERIORS OF VERY HOT JUPITERS USING TRANSIT LIGHT CURVES , 2008, Proceedings of the International Astronomical Union.

[27]  Konstantin Batygin,et al.  DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS , 2009, 0907.5019.

[28]  D. Stevenson Planetary magnetic fields , 2003 .

[29]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.