Supraconvergence of a Finite Difference Scheme for Elliptic Boundary Value Problems of the Third Kind in Fractional Order Sobolev Spaces

Abstract In this paper, we study the convergence of the finite difference discretization of a second order elliptic equation with variable coefficients subject to general boundary conditions. We prove that the scheme exhibits the phenomenon of supraconvergence on nonuniform grids, i.e., although the truncation error is in general of the first order alone, one has second order convergence. All error estimates are strictly local. Another result of the paper is a close relationship between finite difference scheme and linear finite element methods combined with a special kind of quadrature. As a consequence, the results of the paper can be viewed as the introduction of a fully discrete finite element method for which the gradient is superclose. A numerical example is given.

[1]  Andrew B. White,et al.  Some Supraconvergent Schemes for Hyperbolic Equations on Irregular Grids , 1989 .

[2]  R. D. Grigorieff,et al.  Supraconvergence and Supercloseness of a Scheme for Elliptic Equations on Nonuniform Grids , 2006 .

[3]  Frank de Hoog,et al.  On the rate of convergence of finite difference schemes on nonuniform grids , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[4]  Nick Levine,et al.  Superconvergent Recovery of the Gradient from Piecewise Linear Finite-element Approximations , 1985 .

[5]  Peter A. Forsyth,et al.  Quadratic convergence for cell-centered grids , 1988 .

[6]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[7]  Petr N. Vabishchevich,et al.  Second-order accurate finite-difference schemes on nonuniform grids , 1998 .

[8]  Boško Jovanović,et al.  Fractional Order Convergence Rate Estimates Of Finite Difference Method On Nonuniform Meshes , 2001 .

[9]  Vladimir L. Makarov,et al.  On the convergence of difference schemes for the approximation of solutionsu ∈ W2m (m>0.5) of elliptic equations with mixed derivatives , 1984 .

[10]  Some Gradient Superconvergence Results in the Finite Element Method , 1989 .

[11]  Endre Süli,et al.  Convergence of a Finite-Difference Scheme for Second-Order Hyperbolic Equations with Variable Coefficients , 1987 .

[12]  Boško S. Jovanović The finite difference method for boundary-value problems with weak solutions , 1993 .

[13]  Ivan Hlaváček,et al.  How to recover the gradient of linear elements on nonuniform triangulations , 1996 .

[14]  T. A. Manteuffel,et al.  Numerical solution of partial differential equations on irregular grids , 1987 .

[15]  R. Noyé,et al.  Numerical Solutions of Partial Differential Equations , 1983 .

[16]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[17]  Finite difference approximations of generalized solutions , 1985 .

[18]  P. P. Matus,et al.  Difference Schemes for Elliptic Equations with Mixed Derivatives , 2004 .

[19]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[20]  Pekka Neittaanmäki,et al.  Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .

[21]  Jinchao Xu,et al.  Superconvergence of the gradient in piecewise linear finite-element approximation to a parabolic problem , 1989 .

[22]  L. A. Rukhovets,et al.  Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary , 1969 .

[23]  Pekka Neittaanmäki,et al.  On a global superconvergence of the gradient of linear triangular elements , 1987 .

[24]  Rolf Dieter Grigorieff Some Stability Inequalities for Compact Finite Difference Schemes , 1988 .

[25]  Andrew B. White,et al.  Supra-convergent schemes on irregular grids , 1986 .

[26]  Bosco García-Archilla,et al.  A supraconvergent scheme for the Korteweg-de Vries equation , 1992 .

[27]  Boško S. Jovanović Finite Difference Schemes for Partial Differential Equations with Weak Solutions and Irregular Coefficients , 2004 .

[28]  A. A. Samarskiĭ Theorie der Differenzenverfahren , 1984 .

[29]  Rolf Dieter Grigorieff,et al.  Supraconvergence of a finite difference scheme for solutions in Hs(0, L) , 2005 .

[30]  Rolf Dieter Grigorieff,et al.  On the supraconvergence of elliptic finite difference schemes , 1998 .

[31]  Thomas A. Manteuffel,et al.  The numerical solution of second-order boundary value problems on nonuniform meshes , 1986 .

[32]  Boško S. Jovanović,et al.  Convergence Of a Finite Difference Scheme for the Third Boundary-Value Problem for an Elliptic Equation with Variable Coefficients , 2001 .

[33]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[34]  J. M. Sanz-Serna,et al.  A finite difference formula for the discretization of d^3/dx^3 on nonuniform grids , 1991 .