COSMOLIKE - cosmological likelihood analyses for photometric galaxy surveys

We explore strategies to extract cosmological constraints from a joint analysis of cosmic shear, galaxy–galaxy lensing, galaxy clustering, cluster number counts and cluster weak lensing. We utilize the COSMOLIKE software to simulate results from a Large Synoptic Survey Telescope (LSST) like data set, specifically, we (1) compare individual and joint analyses of the different probes, (2) vary the selection criteria for lens and source galaxies, (3) investigate the impact of blending, (4) investigate the impact of the assumed cosmological model in multiprobe covariances, (6) quantify information content as a function of scales and (7) explore the impact of intrinsic galaxy alignment in a multiprobe context. Our analyses account for all cross-correlations within and across probes and include the higher-order (non-Gaussian) terms in the multiprobe covariance matrix. We simultaneously model cosmological parameters and a variety of systematics, e.g. uncertainties arising from shear and photo-z calibration, cluster mass-observable relation, galaxy intrinsic alignment and galaxy bias (up to 54 parameters altogether). We highlight two results: first, increasing the number density of source galaxies by ∼30 per cent, which corresponds to solving blending for LSST, only gains little information. Secondly, including small scales in clustering and galaxy–galaxy lensing, by utilizing halo occupation distribution models, can substantially boost cosmological constraining power.

[1]  S. More,et al.  Cosmological constraints from a combination of galaxy clustering and lensing – I. Theoretical framework , 2012, 1206.6890.

[2]  Stefan Hilbert,et al.  COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON ΩM AND σ8 WITH A TWO-DIMENSIONAL ANALYSIS , 2012, 1210.2732.

[3]  Rachel Mandelbaum,et al.  Detection of large-scale intrinsic ellipticity—density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys , 2006 .

[4]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[5]  Kendrick M. Smith Pseudo- C ℓ estimators which do not mix E and B modes , 2006 .

[6]  J. Blazek,et al.  Tidal alignment of galaxies , 2015, 1504.02510.

[7]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[8]  J. Fry The Evolution of Bias , 1996 .

[9]  M. Takada,et al.  Super-Sample Covariance in Simulations , 2014, 1401.0385.

[10]  R. Nichol,et al.  redMaGiC: selecting luminous red galaxies from the DES Science Verification data , 2015, 1507.05460.

[11]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[12]  D. Gerdes,et al.  Weak lensing by galaxy troughs in DES Science Verification data , 2015, 1507.05090.

[13]  S. More,et al.  Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies , 2014, 1411.1755.

[14]  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[15]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[16]  R. H. Wechsler,et al.  ROBUST OPTICAL RICHNESS ESTIMATION WITH REDUCED SCATTER , 2011, 1104.2089.

[17]  Uros Seljak,et al.  Extracting primordial Non-Gaussianity without cosmic variance. , 2008, Physical review letters.

[18]  Benjamin Joachimi,et al.  Putting the precision in precision cosmology: How accurate should your data covariance matrix be? , 2012, 1212.4359.

[19]  I. Szapudi,et al.  Shrinkage estimation of the power spectrum covariance matrix , 2007, 0711.2509.

[20]  Cosmic shear E/B-mode estimation with binned correlation function data , 2012, 1208.0068.

[21]  C. B. D'Andrea,et al.  Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.

[22]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[23]  K. Umetsu,et al.  THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS , 2012, 1210.2446.

[24]  Saba Sehrish,et al.  CosmoSIS: Modular cosmological parameter estimation , 2014, Astron. Comput..

[25]  Scott Dodelson,et al.  The Effect of Covariance Estimator Error on Cosmological Parameter Constraints , 2013, 1304.2593.

[26]  M. Takada,et al.  The impact of non‐Gaussian errors on weak lensing surveys , 2008, 0810.4170.

[27]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[28]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[29]  Princeton,et al.  Joint analysis of cluster number counts and weak lensing power spectrum to correct for the super-sample covariance , 2013, 1307.4399.

[30]  S. Habib,et al.  DARK MATTER HALO PROFILES OF MASSIVE CLUSTERS: THEORY VERSUS OBSERVATIONS , 2011, 1112.5479.

[31]  Shahab Joudaki,et al.  An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models , 2015, 1505.07833.

[32]  L. Senatore Bias in the effective field theory of large scale structures , 2014, 1406.7843.

[33]  A. Heavens,et al.  Beyond ΛCDM: Problems, solutions, and the road ahead , 2015, 1512.05356.

[34]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[35]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[36]  E. Komatsu,et al.  Position-dependent power spectrum of the large-scale structure: a novel method to measure the squeezed-limit bispectrum , 2014, 1403.3411.

[37]  T. D. Matteo,et al.  Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics , 2014, 1409.7297.

[38]  Wayne Hu,et al.  Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005 .

[39]  Patrick McDonald,et al.  Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS , 2009, 0902.0991.

[40]  Mark Trodden,et al.  Beyond the Cosmological Standard Model , 2014, 1407.0059.

[41]  U. Seljak,et al.  Joint analysis of gravitational lensing, clustering, and abundance: Toward the unification of large-scale structure analysis , 2012, 1207.2471.

[42]  Scott Dodelson,et al.  Accounting for baryonic effects in cosmic shear tomography: determining a minimal set of nuisance parameters using PCA , 2014, 1405.7423.

[43]  Tim Eifler,et al.  Dependence of cosmic shear covariances on cosmology - Impact on parameter estimation , 2008, 0810.4254.

[44]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[45]  Scott Dodelson,et al.  Accounting for Baryons in Cosmological Constraints from Cosmic Shear , 2012, 1212.1177.

[46]  Benjamin D. Wandelt,et al.  First measurement of gravitational lensing by cosmic voids in SDSS , 2013, 1309.2045.

[47]  Power Spectrum Covariance of Weak Gravitational Lensing , 2000, astro-ph/0012087.

[48]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[49]  S. Krughoff,et al.  The effective number density of galaxies for weak lensing measurements in the LSST project , 2013, 1305.0793.

[50]  Christopher M. Hirata,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[51]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[52]  Mustapha Ishak,et al.  The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology , 2014, 1407.6990.

[53]  P. Schneider,et al.  COSEBIs: Extracting the full E-/B-mode information from cosmic shear correlation functions , 2010, 1002.2136.

[54]  Gary M. Bernstein,et al.  COMPREHENSIVE TWO-POINT ANALYSES OF WEAK GRAVITATIONAL LENSING SURVEYS , 2008, 0808.3400.

[55]  Hu Zhan,et al.  DISTANCE, GROWTH FACTOR, AND DARK ENERGY CONSTRAINTS FROM PHOTOMETRIC BARYON ACOUSTIC OSCILLATION AND WEAK LENSING MEASUREMENTS , 2008, 0806.0937.

[56]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[57]  R. Nichol,et al.  Joint analysis of galaxy-galaxy lensing and galaxy clustering: methodology and forecasts for Dark Energy Survey , 2015, 1507.05353.

[58]  Masanori Sato,et al.  SIMULATIONS OF WIDE-FIELD WEAK LENSING SURVEYS. I. BASIC STATISTICS AND NON-GAUSSIAN EFFECTS , 2009, 0906.2237.

[59]  T. Eifler Weak-lensing statistics from the Coyote Universe , 2010, 1012.2978.

[60]  Joint likelihood function of cluster counts and n -point correlation functions: Improving their power through including halo sample variance , 2014, 1406.3330.

[61]  Wayne Hu,et al.  Joint galaxy - lensing observables and the dark energy , 2004 .

[62]  D. Elbaz,et al.  HerMES: Halo occupation number and bias properties of dusty galaxies from angular clustering measurements , 2010, 1005.3303.

[63]  B. Wandelt,et al.  Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey , 2015, 1502.02690.

[64]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[65]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[66]  University of Cambridge,et al.  Probing Cosmology with Weak Lensing Minkowski Functionals , 2011, 1109.6334.

[67]  Christopher B. Morrison,et al.  On estimating cosmology-dependent covariance matrices , 2013, 1304.7789.

[68]  Tim Eifler,et al.  Combining probes of large-scale structure with COSMOLIKE , 2013, 1302.2401.

[69]  T. Eifler,et al.  The impact of intrinsic alignment on current and future cosmic shear surveys , 2015, 1506.08730.

[70]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[71]  M. Takada,et al.  Power spectrum super-sample covariance , 2013, 1302.6994.

[72]  Argelander-Institut fur Astronomie,et al.  Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations , 2009, 0911.2454.

[73]  J. Anthony Tyson,et al.  THE ELLIPTICITY DISTRIBUTION OF AMBIGUOUSLY BLENDED OBJECTS , 2014, 1406.1506.