Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly

Like the mammalian visual cortex, the fly visual system is organized into retinotopic columns. A widely accepted biophysical model for computing visual motion, the elementary motion detector proposed nearly 50 years ago posits a temporal correlation of spatially separated visual inputs implemented across neighboring retinotopic visual columns. Whereas the inputs are defined, the neural substrate for motion computation remains enigmatic. Indeed, it is not known where in the visual processing hierarchy the computation occurs. Here, we combine genetic manipulations with a novel high-throughput dynamic behavioral analysis system to dissect visual circuits required for directional optomotor responses. An enhancer trap screen of synapse-inactivated neural circuits revealed one particularly striking phenotype, which is completely insensitive to motion yet displays fully intact fast phototaxis, indicating that these animals are generally capable of seeing and walking but are unable to respond to motion stimuli. The enhancer circuit is localized within the first optic relay and strongly labels the only columnar interneuron known to interact with neighboring columns both in the lamina and medulla, spatial synaptic interactions that correspond with the two dominant axes of elementary motion detectors on the retinal lattice.

[1]  M. Bate,et al.  The development of Drosophila melanogaster , 1993 .

[2]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[3]  N. Franceschini,et al.  Evidence for a sensitising pigment in fly photoreceptors , 1977, Nature.

[4]  Roland Strauss,et al.  Task-specific association of photoreceptor systems and steering parameters in Drosophila , 2001, Journal of Comparative Physiology A.

[5]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[6]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[7]  V. Braitenberg,et al.  A regular net of reciprocal synapses in the visual system of the fly,Musca domestica , 1974, Journal of comparative physiology.

[8]  S. Zipursky,et al.  Making Connections in the Fly Visual System , 2002, Neuron.

[9]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[10]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[11]  Jongkyeong Chung,et al.  cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila , 2008, Nature.

[12]  N. J. Strausfeld,et al.  The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[13]  Michael H Dickinson,et al.  Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. , 2002, The Journal of experimental biology.

[14]  C. Zuker,et al.  Signal transduction in the visual system of Drosophila. , 1991, Annual review of cell biology.

[15]  J. H. Hateren,et al.  Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation , 1992, Journal of Comparative Physiology A.

[16]  J. Levine,et al.  Generalization of Courtship Learning in Drosophila Is Mediated by cis-Vaccenyl Acetate , 2007, Current Biology.

[17]  N. Strausfeld,et al.  The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L.). , 1973, Brain research.

[18]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[19]  Nicholas J. Strausfeld,et al.  The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris , 1970, Zeitschrift für vergleichende Physiologie.

[20]  J. C. Clemens,et al.  Drosophila Dscam Is an Axon Guidance Receptor Exhibiting Extraordinary Molecular Diversity , 2000, Cell.

[21]  Ronald L. Davis,et al.  Spatiotemporal Rescue of Memory Dysfunction in Drosophila , 2003, Science.

[22]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[23]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[24]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[25]  K. Kirschfeld,et al.  Spectral tuning of rhodopsin and metarhodopsin in vivo , 1993, Neuron.

[26]  Patrick A. Shoemaker,et al.  A Model for the Detection of Moving Targets in Visual Clutter Inspired by Insect Physiology , 2008, PloS one.

[27]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[28]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[29]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[30]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[31]  Michael B. Reiser,et al.  Dynamic properties of large-field and small-field optomotor flight responses in Drosophila , 2007, Journal of Comparative Physiology A.

[32]  M. Heisenberg,et al.  Distinct functions of neuronal synaptobrevin in developing and mature fly photoreceptors. , 2006, Journal of neurobiology.

[33]  Shin-ya Takemura,et al.  Synaptic circuits of the Drosophila optic lobe: The input terminals to the medulla , 2008, The Journal of comparative neurology.

[34]  Reinhard Wolf,et al.  Motion vision is independent of color in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[35]  S. Benzer BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[36]  John Tyler Bonner,et al.  Morphogenesis , 1965, The Physics of Living Matter: Space, Time and Information.

[37]  Roger C. Hardie,et al.  Feedback Network Controls Photoreceptor Output at the Layer of First Visual Synapses in Drosophila , 2006, The Journal of general physiology.

[38]  A. Nern,et al.  Local N-Cadherin Interactions Mediate Distinct Steps in the Targeting of Lamina Neurons , 2008, Neuron.