Concurrent Precipitation of AlN and VN in Microalloyed Steel

The precipitation kinetics of AlN and VN in microalloyed steel is investigated numerically with the thermo-kinetic software MatCalc. To mimic the heterogeneous precipitation of AlN along austenite grain boundaries, a new model is utilized, which takes into account the fast short circuit diffusion along grain boundaries and sluggish bulk diffusion inside the grains. It is demonstrated that the precipitation of VN inside the grains can be more rapid than the precipitation of AlN at the grain boundaries. However, the thermodynamically more stable AlN can overgrow and dissolve the existing VN again. The computed results are compared to experimental results from literature and good agreement is observed.

[1]  S. Zając,et al.  The Role Of Vanadium In Microalloyed Steels , 1999 .

[2]  T. R. Meadowcroft,et al.  Modeling of AlN precipitation in low carbon steels , 1999 .

[3]  R. Mehl,et al.  Grain boundary diffusion mechanisms in metals , 1982 .

[4]  P. König,et al.  Wechselwirkung von Aluminium, Vanadin und Stickstoff in aluminiumberuhigten, mit Vanadin und Stickstoff legierten schweißbaren Baustählen mit rd. 0,2 % C und 1,5 % Mn , 1961 .

[5]  B. Mintz,et al.  Hot ductility of directly cast C–Mn–Nb–Al steel , 1986 .

[6]  E. Kozeschnik,et al.  Generalized Nearest-Neighbor Broken-Bond Analysis of Randomly Oriented Coherent Interfaces in Multicomponent Fcc and Bcc Structures , 2009 .

[7]  E. Kozeschnik,et al.  Mean-field model for the growth and coarsening of stoichiometric precipitates at grain boundaries , 2009 .

[8]  E. Kozeschnik,et al.  Modified Evolution Equations for the Precipitation Kinetics of Complex Phases in Multi-Component Systems , 2004 .

[9]  B. Mintz,et al.  Influence of cooling rate on hot ductility of C-Mn-AI and C-Mn-Nb-AL steels , 1998 .

[10]  T. R. Meadowcroft,et al.  Dissolution and Coarsening oF Aluminum Nitride Precipitates in Low Carbon Steel — Distribution, Size and Morphology , 2000 .

[11]  T. R. Meadowcroft,et al.  Modeling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels , 2000 .

[12]  V. Massardier,et al.  Determination of aluminium nitride or free nitrogen in low carbon steel , 2001 .

[13]  E. Kozeschnik,et al.  Precipitation Kinetics of Aluminium Nitride in Austenite in Microalloyed HSLA Steels , 2010 .

[14]  J. Merlin,et al.  Study of the Role Played by Nitrogen on the Deep-Drawing Properties of Aluminium Killed Steel Sheets Obtained after a Continuous Annealing , 2003 .

[15]  R. Borrelly,et al.  Study of aluminium nitride precipitation in pure FeAlN alloy by thermoelectric power measurements , 1997 .

[16]  H. Aaronson,et al.  Anisotropy of coherent interphase boundary energy , 1980 .

[17]  V. Massardier,et al.  Kinetic and microstructural study of aluminium nitride precipitation in a low carbon aluminium-killed steel , 2003 .

[18]  Alan J. Craven,et al.  Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging Part 2 – Chemical characterisation of dispersion strengthening precipitates , 2007 .

[19]  B. Mintz,et al.  Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting , 2010 .

[20]  F. G. Wilson,et al.  Aluminium nitride in steel , 1988 .

[21]  E. Kozeschnik,et al.  Numerical Analysis of the Nb(C,N) Precipitation Kinetics in Microalloyed Steels , 2008 .

[22]  K. C. Russell Nucleation in solids: The induction and steady state effects , 1980 .

[23]  E. Kozeschnik,et al.  Size dependence of the interfacial energy in the generalized nearest-neighbor broken-bond approach , 2009 .

[24]  Yuri F. Titovets,et al.  Analysis of aluminium nitride precipitation proceeding concurrently with recrystallization in low-carbon steel , 1998 .