A Spectral Penalty Method for Two-Sided Fractional Differential Equations with General Boundary Conditions

We consider spectral approximations to the conservative form of the two-sided Riemann-Liouville (R-L) and Caputo fractional differential equations (FDEs) with nonhomogeneous Dirichlet (fractional and classical, respectively) and Neumann (fractional) boundary conditions. In particular, we develop a spectral penalty method (SPM) by using the Jacobi poly-fractonomial approximation for the conservative R-L FDEs while using the polynomial approximation for the conservative Caputo FDEs. We establish the well-posedness of the corresponding weak problems and analyze sufficient conditions for the coercivity of the SPM for different types of fractional boundary value problems. This analysis allows us to estimate the proper values of the penalty parameters at boundary points. We present several numerical examples to verify the theory and demonstrate the high accuracy of SPM, both for stationary and time dependent FDEs. Moreover, we compare the results against a Petrov-Galerkin spectral tau method (PGS-$\tau$, an extension of [Z. Mao, G.E. Karniadakis, SIAM J. Numer. Anal., 2018]) and demonstrate the superior accuracy of SPM for all cases considered.

[1]  Jan S. Hesthaven,et al.  A Stable Penalty Method for the Compressible Navier-Stokes Equations: III. Multidimensional Domain Decomposition Schemes , 1998, SIAM J. Sci. Comput..

[2]  Zhiping Mao,et al.  A Spectral Method (of Exponential Convergence) for Singular Solutions of the Diffusion Equation with General Two-Sided Fractional Derivative , 2018, SIAM J. Numer. Anal..

[3]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[4]  Jan S. Hesthaven,et al.  Spectral penalty methods , 2000 .

[5]  Jan S. Hesthaven,et al.  A Stable Penalty Method for the Compressible Navier-Stokes Equations: II. One-Dimensional Domain Decomposition Schemes , 1997, SIAM J. Sci. Comput..

[6]  D. Benson,et al.  Eulerian derivation of the fractional advection-dispersion equation. , 2001, Journal of contaminant hydrology.

[7]  Jan S. Hesthaven,et al.  A Stable Penalty Method for the Compressible Navier-Stokes Equations: I. Open Boundary Conditions , 1996, SIAM J. Sci. Comput..

[8]  Jan S. Hesthaven,et al.  Stable multi-domain spectral penalty methods for fractional partial differential equations , 2014, J. Comput. Phys..

[9]  Bangti Jin,et al.  A Petrov-Galerkin Finite Element Method for Fractional Convection-Diffusion Equations , 2015, SIAM J. Numer. Anal..

[10]  F. Izsák,et al.  A finite difference method for fractional diffusion equations with Neumann boundary conditions , 2015 .

[11]  Danping Yang,et al.  Wellposedness of Neumann boundary-value problems of space-fractional differential equations , 2016, 1612.02450.

[12]  X. Li,et al.  Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .

[13]  Bangti Jin,et al.  A Finite Element Method With Singularity Reconstruction for Fractional Boundary Value Problems , 2014, 1404.6840.

[14]  Jingtang Ma,et al.  A New Finite Element Analysis for Inhomogeneous Boundary-Value Problems of Space Fractional Differential Equations , 2017, J. Sci. Comput..

[15]  George E. Karniadakis,et al.  Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation , 2013, J. Comput. Phys..

[16]  John W. Crawford,et al.  The impact of boundary on the fractional advection dispersion equation for solute transport in soil: Defining the fractional dispersive flux with the Caputo derivatives , 2007 .

[17]  Zhiping Mao,et al.  Spectral element method with geometric mesh for two-sided fractional differential equations , 2017, Advances in Computational Mathematics.

[18]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[19]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[20]  Kun Zhou,et al.  Mathematical and Numerical Analysis of Linear Peridynamic Models with Nonlocal Boundary Conditions , 2010, SIAM J. Numer. Anal..

[21]  Mihály Kovács,et al.  Fractional Reproduction-Dispersal Equations and Heavy Tail Dispersal Kernels , 2007, Bulletin of mathematical biology.

[22]  Norbert Heuer,et al.  Regularity of the solution to 1-D fractional order diffusion equations , 2016, Math. Comput..

[23]  Zhiping Mao,et al.  A Generalized Spectral Collocation Method with Tunable Accuracy for Fractional Differential Equations with End-Point Singularities , 2017, SIAM J. Sci. Comput..

[24]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[25]  Kelly Black,et al.  Polynomial collocation using a domain decomposition solution to parabolic PDE's via the penalty method and explicit/implicit time marching , 1992 .

[26]  B. Baeumer,et al.  Fractional partial differential equations with boundary conditions , 2017, 1706.07266.

[27]  Hongguang Sun,et al.  Bounded fractional diffusion in geological media: Definition and Lagrangian approximation , 2016 .

[28]  Chae Young Lim,et al.  Parameter estimation for fractional transport: A particle‐tracking approach , 2009 .

[29]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[30]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[31]  S. C. Lim,et al.  Repulsive Casimir force from fractional Neumann boundary conditions , 2009, 0906.0635.

[32]  Zhiping Mao,et al.  Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients , 2016, J. Comput. Phys..

[33]  Mark M. Meerschaert,et al.  Boundary conditions for two-sided fractional diffusion , 2019, J. Comput. Phys..

[34]  A. Compte,et al.  Generalized Diffusion−Advection Schemes and Dispersive Sedimentation: A Fractional Approach† , 2000 .

[35]  Hong Wang,et al.  Wellposedness of Variable-Coefficient Conservative Fractional Elliptic Differential Equations , 2013, SIAM J. Numer. Anal..

[36]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[37]  Rina Schumer,et al.  Fractional advection‐dispersion equations for modeling transport at the Earth surface , 2009 .

[38]  Diego del-Castillo-Negrete,et al.  Fractional diffusion models of nonlocal transport , 2006 .

[39]  Vijay P. Singh,et al.  Parameter estimation for fractional dispersion model for rivers , 2006 .

[40]  Jiaquan Xie,et al.  Block pulse functions for solving fractional Poisson type equations with Dirichlet and Neumann boundary conditions , 2017 .

[41]  Mihály Kovács,et al.  Boundary conditions for fractional diffusion , 2017, J. Comput. Appl. Math..

[42]  Francesco Mainardi,et al.  The fractional Fick's law for non-local transport processes , 2001 .

[43]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[44]  Hong Wang,et al.  Inhomogeneous Dirichlet Boundary-Value Problems of Space-Fractional Diffusion Equations and their Finite Element Approximations , 2014, SIAM J. Numer. Anal..

[45]  Jie Shen,et al.  Generalized Jacobi functions and their applications to fractional differential equations , 2014, Math. Comput..

[46]  Daniele,et al.  CONVERGENCE RESULTS FOR PSEUDOSPECTRAL APPROXIMATIONS OF HYPERBOLIC SYSTEMS BY A PENALTY TYPE BOUNDARY TREATMENT , 1991 .

[47]  Eugenio Montefusco,et al.  Fractional diffusion with Neumann boundary conditions: the logistic equation , 2012, 1208.0470.

[48]  Jie Shen,et al.  Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations , 2016 .